Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{1^2}{1.2}.\frac{2^2}{2.3}.\frac{3^2}{3.4}...\frac{9^2}{9.10}\)
\(A=\frac{1.1.2.2.3.3...9.9}{1.2.2.3.3.4...9.10}\)
\(A=\frac{1}{10}\)
\(B=\frac{1}{99}-\frac{1}{99.98}-\frac{1}{98.97}-...-\frac{1}{3.2}-\frac{1}{2.1}\)
\(B=\frac{1}{99}-\left(\frac{1}{99.98}+\frac{1}{98.97}+...+\frac{1}{3.2}+\frac{1}{2.1}\right)\)
\(B=\frac{1}{99}-\left(\frac{1}{99}-\frac{1}{98}+\frac{1}{98}-\frac{1}{97}+...+\frac{1}{3}-\frac{1}{2}+\frac{1}{2}-1\right)\)
\(B=\frac{1}{99}-\left(\frac{1}{99}-1\right)\)
\(B=\frac{1}{99}-\frac{1}{99}+1\)
\(B=1\)
1.
A = (22.21.20 - 2.1.0) : 3
A = 9240 : 3
A = 3080
3.A = 3080 x 3
3.A = 9240
3N = 1.2.3+2.3(4-1)+3.4.(5-2)+.+99.100.(101-98)
3N = 1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+.+99.100.101-98.99.100
3N = 99.100.101
3N=33.100.101=333300
b)
tổng này có 99-10+1=90 (số hạng):
10,11 + 11,12 + 12,13 +............+ 98,99 + 99,100 =
10,100 + 11,11 + 12,12 + .......... + 98,98 + 99,99 =
(10,10 + 99,99) x 90 : 2 = 4954,05
c)
R=1.(2-1)+2.(3-1)+.....+100.(101-1)
=1.2-1.1+2.3-1.2+......+100.101-1.100
=(1.2+2.3+.....+99.100+100.101)-(1+2+3+...+100)
=[1.2.3+2.3.(4-1)+........100.101.(102-99)]:3+[(100+1).100:2]
(tổng trên chia cho 3 nên cuối cùng chia 3)
=(1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+.....100.101.102-99.100.101):3+5050
=(100.101.102) :3 +5050
=348450
d)=1.100+2.(100-1)+.....+100.(100-99)
=1.100+2.100-1.2+3.100-2.3+........+100.100-99.100
=100.(1+2+3+.......+100)-(1.2+2.3+3.4+....+99.100)
=100.\(\frac{101.100}{2}-\frac{99.100.101}{3}\) =505000-333300=171700
p/s mỏi tay, bấm mình nhé
có: 1/1.2= 1/1-1/2
1/2.3=1/2-1/3
...
1/8.9= 1/8-1/9
1/9.10=1/9-1/10
suy ra B=1/1-1/2+1/2-1/3+...+1/9-1/10
=1/1-1/10 (vì bạn thấy trừ 1/2 rồi cộng 1/2, trừ 1/3 cộng 1/3,... thì khử đi)
=9/10.
vậy B=9/10
1 + 2 -3-4 + 5 + 6-7-8+...+2017+2018
= 1 + (2-3-4+5) + (6-7-8+9) + ...+ (2014-2015-2016+2017) + 2018
= 1 + 0+0+...+0+2018
=2 019
a) 5x - x = 64 \(\Rightarrow\) 4x = 64 \(\Rightarrow\) x = 16
b) \(A=\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{9\cdot10}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{9}-\frac{1}{10}\)
\(=1-\frac{1}{10}\)
\(=\frac{9}{10}\)
c) \(B=\frac{2}{1\cdot3}+\frac{2}{3\cdot5}+...+\frac{2}{99\cdot101}\)
\(=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{101}\)
\(=1-\frac{1}{101}\)
\(=\frac{100}{101}\)
d) \(C=\frac{1}{1\cdot3}+\frac{1}{3\cdot5}+...+\frac{1}{97\cdot99}\)
\(=\frac{1}{2}\cdot\left(\frac{2}{1\cdot3}+\frac{2}{3\cdot5}+...+\frac{2}{97\cdot99}\right)\)
\(=\frac{1}{2}\cdot\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+..+\frac{1}{97}-\frac{1}{99}\right)\)
\(=\frac{1}{2}\cdot\left(1-\frac{1}{99}\right)\)
\(=\frac{1}{2}\cdot\frac{98}{99}\)
\(=\frac{49}{99}\)
Có: A=\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{9.10}\)
A=\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{9}-\frac{1}{10}\)
A=\(1-\frac{1}{10}\)
A=\(\frac{9}{10}\)
Vậy A=\(\frac{9}{10}\)
\(B=\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+...+\frac{1}{132}\)
\(B=\frac{1}{4\cdot5}+\frac{1}{5\cdot6}+\frac{1}{6\cdot7}+...+\frac{1}{11\cdot12}\)
\(B=\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+...+\frac{1}{11}-\frac{1}{12}\)
\(B=\frac{1}{4}-\frac{1}{12}\)
\(B=\frac{1}{6}\)
\(A=\dfrac{1}{2.1}+\dfrac{2}{2.3}+\dfrac{2}{3.4}+...+\dfrac{2}{9.10}\)
\(=\dfrac{1}{2}+2\left(\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{9.10}\right)\)
\(=\dfrac{1}{2}+2\left(\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{9}-\dfrac{1}{10}\right)\)
\(=\dfrac{1}{2}+2\left(\dfrac{1}{2}-\dfrac{1}{10}\right)\)
\(=\dfrac{1}{2}+1-\dfrac{1}{5}\)
\(=\dfrac{1}{2}+\dfrac{4}{5}=\dfrac{13}{10}\)
Vậy \(A=\dfrac{13}{10}\)