![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(1+\frac{1}{2}\left(1+2\right)+\frac{1}{3}\left(1+2+3\right)+....+\frac{1}{2020}\left(1+2+3+...+2020\right)\)
\(=1+\frac{1}{2}.\frac{2.3}{2}+\frac{1}{3}.\frac{3.4}{2}+....+\frac{1}{2020}.\frac{2020.2021}{2}\)
\(=1+\frac{3}{2}+\frac{4}{2}+....+\frac{2021}{2}\)
\(=\frac{2}{2}+\frac{3}{2}+\frac{4}{2}+....+\frac{2021}{2}\)
\(=\frac{\left[\left(2021-2\right)+1\right]\left(2021+2\right)}{2}:2\)
\(=1021615\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Đặt \(K=1+\frac{1}{1+2}+\frac{1}{1+2+3}+...+\frac{1}{1+2+3+...+2020}\)
\(=1+\frac{1}{\frac{2.3}{2}}+\frac{1}{\frac{3.4}{2}}+\frac{1}{\frac{4.5}{2}}+...+\frac{1}{\frac{2020.2021}{2}}\)
\(=\frac{2}{1.2}+\frac{2}{2.3}+\frac{2}{3.4}+\frac{2}{4.5}+...+\frac{2}{2020.2021}\)
\(=2\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2020}-\frac{1}{2021}\right)\)
\(=2\left(1-\frac{1}{2021}\right)=2.\frac{2020}{2021}=\frac{4040}{2021}\)
\(\Rightarrow D=\frac{2020}{\frac{4040}{2021}}=\frac{2021}{2}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(A=1+\frac{1}{3}+\left(\frac{1}{3}\right)^2+...+\left(\frac{1}{3}\right)^{2020}\)
=> \(3A=3+1+\frac{1}{3}+...+\left(\frac{1}{3}\right)^{2019}\)
=> \(3A-A=\left(3+1+\frac{1}{3}+...+\left(\frac{1}{3}\right)^{2019}\right)-\left(1+\frac{1}{3}+\left(\frac{1}{3}\right)^2+...+\left(\frac{1}{3}\right)^{2020}\right)\)
=> \(2A=3-\frac{1}{3^{2020}}=\frac{3^{2021}-1}{3^{2020}}\)
=> \(A=\frac{3^{2021}-1}{3^{2020}.2}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có \(\frac{a}{a^2}=\frac{a^2}{a^3}=...=\frac{a^{2020}}{a^{2021}}=\frac{a+a^2+....+a^{2020}}{a^2+a^3+...+a^{2021}}\)
=> \(\frac{a}{a^2}=\frac{a+a^2+...+a^{2020}}{a^2+a^3+...+a^{2021}}\)
=> \(\left(\frac{a}{a^2}\right)^{2020}=\left(\frac{a+a^2+...+a^{2020}}{a^2+a^3+...+a^{2021}}\right)^{2020}\)
=> \(\frac{a}{a^2}.\frac{a}{a^2}...\frac{a}{a^2}=\left(\frac{a+a^2+...+a^{2020}}{a^2+a^3+...+a^{2021}}\right)^{2020}\)(2020 thừa số \(\frac{a}{a^2}\))
=> \(\frac{a}{a^2}.\frac{a^2}{a^3}...\frac{a^{2020}}{a^{2021}}=\left(\frac{a+a^2+...+a^{2020}}{a^2+a^3+...+a^{2021}}\right)^{2020}\)(Vì \(\frac{a}{a^2}=\frac{a^2}{a^3}=...=\frac{a^{2020}}{a^{2021}}\))
=> \(\frac{a}{a^{2021}}=\left(\frac{a+a^2+...+a^{2020}}{a^2+a^3+...+a^{2021}}\right)^{2020}\)(đpcm)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)