![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
A=1002(1+22+32+....+102)=1002.375=375.104
B=\(\frac{4^{8^{ }}.4.6^2+4^{8^{ }}.4^4}{4^8.10^2}\)=\(\frac{4^{8^{ }}.2^2.6^2+4^{8^{ }}.4^4}{4^8.10^2}\)=\(\frac{4^{8^{ }}.2^2.6^2+4^8.2^2.2^6}{4^8.2^2.5^2}\)=\(\frac{4^8.2^2\left(6^2+2^6\right)}{4^8.2^2.5^2}\)=\(\frac{6^2+2^6}{5^2}\)
B=48.4.62+48.44:48.102
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
a) 2011 + 5[300 - (17 - 7)2 ]
= 2011 + 5[300 - 100]
= 2011 + 5.200
= 2011 + 1000
= 3011
b) 695 - [200 + (11 - 1)2 ]
= 695 - [200 + 100]
= 695 - 300
= 395
c) 129 - 5[29 - (6-1)2 ]
= 129 - 5[29 - 25]
= 129 - 5 . 4
= 129 - 20
= 109
d) 2345 - 1000 : [19 - 2(21-18)2 ]
= 2345 - 1000 : [19 - 2 . 9]
= 2345 - 1000 : 1
= 2345 - 1000
= 1345
a, 2011+5 [300-(17-7)2 ] =2011+5[300-102]
=2011+5[300-100]=2011+5.200
=2011+1000=3011
b, 695-[200+(11-1)2]=695-[200+102]
=695-[200+100]=695-300=395
![](https://rs.olm.vn/images/avt/0.png?1311)
1/ \(\frac{1}{2}x+1=\frac{2}{3}\)
\(\frac{1}{2}x=\frac{2}{3}-1\)
\(\frac{1}{2}x=-\frac{1}{3}\)
\(x=\left(-\frac{1}{3}\right)\div\frac{1}{2}\)
\(x=-\frac{2}{3}\)
2/ \(100+x=200+300\)
\(100+x=500\)
\(x=500-100\)
\(x=400\)
Chúc bạn học tốt nha!
Chúc bạn học tốt nha!
Chúc bạn học tốt nha!
Chúc bạn học tốt nha!
\(\frac{1}{2}x+1=\frac{2}{3}\Rightarrow\frac{1}{2}x=\frac{2}{3}-1=-\frac{1}{3}\Rightarrow x=-\frac{1}{3}:\frac{1}{2}=-\frac{2}{3}\)-2/3 vây..
\(100+x=200+300\\ x=500-100=100\) vậy...
![](https://rs.olm.vn/images/avt/0.png?1311)
a, 210 = 22.5 = 322 > 102
b, 2300 = 2100.3 = 6100
3200 = 32.100 = 9100
6100 < 9100
nên : 3200 > 2300
So sánh :
b) 2^300 và 3^200
Ta có :
2^300 = ( 2^3 )^100 = 8^100
3^200 = ( 3^2 )^100 = 9^100
Vì 8^100 < 9^100 => 2^300 < 3^200
Vậy 2^300 < 3^200
![](https://rs.olm.vn/images/avt/0.png?1311)
Câu 1:
B = \(\frac{2999}{1}+\frac{2998}{2}+\frac{2997}{3}+...+\frac{1}{2999}\)
= \(\frac{3000-1}{1}+\frac{3000-2}{2}+\frac{3000-3}{3}+...+\frac{3000-2999}{2999}\)
= \(\left(\frac{3000}{1}+\frac{3000}{2}+\frac{3000}{3}+...+\frac{3000}{2999}\right)-\left(\frac{1}{1}+\frac{2}{2}+\frac{3}{3}+...+\frac{2999}{2999}\right)\)
= \(3000+3000.\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2999}\right)-2999\)
= \(3000\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2999}\right)+\frac{3000}{3000}\)
= \(3000\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{3000}\right)\)
\(\Rightarrow\frac{A}{B}=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{3000}}{3000\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{3000}\right)}=\frac{1}{3000}\)
\(A=30250000\)
RỒI NHA
\(A=100^2+200^2+300^2+...+1000^2\)
\(A=1^2.100^2+2^2.100^2+3^2.100^2+...+10^2.100^2\)
\(A=100^2.\left(1^2+2^2+3^2+...+10^2\right)\)
\(A=10000.385\)
\(A=3850000\)