\(\sqrt{\left(\sqrt{3}-3\right)^2}-\sqrt{16+6\sqrt{3}}\)

b. 

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 7 2018

a) \(\sqrt{\left(\sqrt{3}-3\right)^2}-\sqrt{16+6\sqrt{3}}=3-\sqrt{3}-\sqrt{\left(3+\sqrt{3}\right)^2+4}\)

b) \(\dfrac{3}{\sqrt{5}-\sqrt{2}}+\dfrac{2}{2+\sqrt{2}}+\dfrac{\sqrt{5}-5}{\sqrt{5}-1}=\dfrac{3\left(\sqrt{5}+\sqrt{2}\right)}{5-2}+\dfrac{2\left(2-\sqrt{2}\right)}{4-2}-\dfrac{\sqrt{5}\left(\sqrt{5}-1\right)}{\sqrt{5-1}}=\sqrt{5}+\sqrt{2}+2-\sqrt{2}-\sqrt{5}=2\)

c) \(2+\sqrt{17-4\sqrt{9+4\sqrt{5}}}=2+\sqrt{17-4\left(\sqrt{5}+2\right)}=2+\sqrt{9-4\sqrt{5}}=2+\sqrt{5}-2=\sqrt{5}\)

d) \(\left(\sqrt{5-2\sqrt{6}}+\sqrt{2}\right)\cdot\dfrac{1}{\sqrt{3}}=\left(\sqrt{3}-\sqrt{2}+\sqrt{2}\right)\cdot\dfrac{1}{\sqrt{3}}=1\)

AH
Akai Haruma
Giáo viên
28 tháng 5 2019

Bài 2:

a)

\(\sqrt{9-\sqrt{17}}-\sqrt{9+\sqrt{17}}=\sqrt{\frac{18-2\sqrt{17}}{2}}-\sqrt{\frac{18+2\sqrt{17}}{2}}\)

\(=\sqrt{\frac{17+1-2\sqrt{17}}{2}}-\sqrt{\frac{17+1+2\sqrt{17}}{2}}=\sqrt{\frac{(\sqrt{17}-1)^2}{2}}-\sqrt{\frac{(\sqrt{17}+1)^2}{2}}\)

\(=\frac{\sqrt{17}-1}{\sqrt{2}}-\frac{\sqrt{17}+1}{\sqrt{2}}=-\sqrt{2}\)

b)

\(2\sqrt{2}(\sqrt{3}-2)+(1+2\sqrt{2})^2-2\sqrt{6}\)

\(=2\sqrt{6}-4\sqrt{2}+(1+4\sqrt{2}+8)-2\sqrt{6}\)

\(=1+8=9\)

AH
Akai Haruma
Giáo viên
28 tháng 5 2019

Bài 1:

a)

\(\frac{\sqrt{6}+\sqrt{16}}{2\sqrt{3}+\sqrt{28}}=\frac{\sqrt{6}+4}{2(\sqrt{3}+\sqrt{7})}=\frac{1}{2}.\frac{(\sqrt{6}+4)(\sqrt{7}-\sqrt{3})}{(\sqrt{3}+\sqrt{7})(\sqrt{7}-\sqrt{3})}\)

\(=\frac{(4+\sqrt{6})(\sqrt{7}-\sqrt{3})}{8}\)

b) \(\frac{\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{8}+\sqrt{16}}{\sqrt{2}+\sqrt{3}+\sqrt{4}}=\frac{\sqrt{2}+\sqrt{3}+\sqrt{4}+\sqrt{6}+\sqrt{8}+\sqrt{16}-\sqrt{4}}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)

\(=\frac{\sqrt{2}+\sqrt{3}+\sqrt{4}+\sqrt{6}+\sqrt{8}+\sqrt{4}}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)

\(=\frac{(\sqrt{2}+\sqrt{3}+\sqrt{4})+\sqrt{2}(\sqrt{2}+\sqrt{3}+\sqrt{4})}{\sqrt{2}+\sqrt{3}+\sqrt{4}}=\frac{(\sqrt{2}+1)(\sqrt{2}+\sqrt{3}+\sqrt{4})}{\sqrt{2}+\sqrt{3}+\sqrt{4}}=\sqrt{2}+1\)

1 tháng 7 2019

trinh mai

\(\sqrt{\left(\sqrt{2}-3\right)^2}.\sqrt{3^2+3.2\sqrt{2}+2}=\sqrt{\left(3-\sqrt{2}\right)^2}.\sqrt{\left(3+\sqrt{2}\right)^2}=\left(3-\sqrt{2}\right)\left(3+\sqrt{2}\right)=3^2-2=7\)

1 tháng 7 2019

\(a,\sqrt{17-4\sqrt{9+4\sqrt{5}}}=\sqrt{17-4\sqrt{5+4\sqrt{5}+4}}=\sqrt{17-4\sqrt{\left(\sqrt{5}\right)^2+2.2\sqrt{5}+2^2}}=\sqrt{17-4\sqrt{\sqrt{\left(\sqrt{5}+2\right)^2}}}=\sqrt{17-4\sqrt{\sqrt{5}+2}}\) \(b,\sqrt{a};đk:a\ge0;2-3=-1< 0\Rightarrow sai\)

\(c,\sqrt{\left(\sqrt{3-3}\right)^2}.\sqrt{\frac{1}{3-\sqrt{3}}}=\sqrt{0^2}.\sqrt{\frac{1}{3-\sqrt{3}}}=0.\sqrt{\frac{1}{3-\sqrt{3}}}=0\)

\(d,\left(\sqrt{6}-3\sqrt{3}+5\sqrt{2}-\frac{1}{2}\sqrt{8}\right)2\sqrt{6}=\left(\sqrt{2}.\sqrt{3}-3\sqrt{3}+5\sqrt{2}-\sqrt{2}\right)2\sqrt{6}=\left[\sqrt{3}\left(\sqrt{2}-3\right)+\sqrt{2}.4\right]2\sqrt{6}=\left[2.\sqrt{3}.\sqrt{2}.\sqrt{3}\left(\sqrt{2}-3\right)+\sqrt{2}.\sqrt{2}.\sqrt{3}.2.4\right]=6\sqrt{2}\left(\sqrt{2}-3\right)+16\sqrt{3}\)

26 tháng 7 2018

Phần lớn bạn nên nhân từng cái nha

26 tháng 7 2018

1 , \(\left(\sqrt{12}-2\sqrt{75}\right).\sqrt{3}=\sqrt{12.3}-\sqrt{300.3}=6-30=-24\)

2 , \(\sqrt{3}.\left(\sqrt{12}.\sqrt{27}-\sqrt{3}\right)=\sqrt{12.27.3}-\sqrt{3.3}=18\sqrt{3}-3\)

3 , \(\left(7\sqrt{48}+3\sqrt{27}-\sqrt{12}\right):\sqrt{3}=\left(28\sqrt{3}+9\sqrt{3}-2\sqrt{3}\right):\sqrt{3}=35\)

4 , bạn làm tương tự nhé

5 , bạn làm tương tự nhé

6 , bạn làm tương tự nhé

15 tháng 8 2019

1. Đặt A =\(\sqrt{\frac{129}{16}+\sqrt{2}}\)

\(\sqrt{16}\)A = \(\sqrt{129+16\sqrt{2}}\)

4A = \(\sqrt{\left(8\sqrt{2}+1\right)^2}\)

4A = \(8\sqrt{2}+1\)

⇒ A = \(\frac{\text{​​}8\sqrt{2}+1}{4}\)= \(2\sqrt{2}\) + \(\frac{1}{4}\)

2. Đặt B = \(\sqrt{\frac{289+4\sqrt{72}}{16}}\)

\(\sqrt{16}\)B = \(\sqrt{289+24\sqrt{2}}\)

4B = \(\sqrt{\left(12\sqrt{2}+1\right)^2}\)

4B = \(12\sqrt{2}+1\)

⇒ B = \(\frac{12\sqrt{2}+1}{4}\)= \(3\sqrt{2}+\frac{1}{4}\)

3. \(\sqrt{2-\sqrt{3}}\). \(\left(\sqrt{6}+\sqrt{2}\right)\)

= \(\sqrt{2-\sqrt{3}}\). \(\sqrt{2}.\left(\sqrt{3}+1\right)\)

= \(\sqrt{4-2\sqrt{3}}\) . \(\left(\sqrt{3}+1\right)\)

= \(\sqrt{\left(\sqrt{3}-1\right)^2}\) . \(\left(\sqrt{3}+1\right)\)

= \(\left(\sqrt{3}-1\right)\). \(\left(\sqrt{3}+1\right)\)

= \(\left(\sqrt{3}\right)^2\) - 12

= 3 - 1

= 2

4. \(\left(\sqrt{21}+7\right)\). \(\sqrt{10-2\sqrt{21}}\)

= \(\left(\sqrt{21}+7\right)\) . \(\sqrt{\left(\sqrt{7}-\sqrt{3}\right)^2}\)

= \(\sqrt{7}\left(\sqrt{3}+\sqrt{7}\right)\) . \(\left(\sqrt{7}-\sqrt{3}\right)\)

= \(\sqrt{7}\) \(\left[\left(\sqrt{7}\right)^2-\left(\sqrt{3}\right)^2\right]\)

= \(\sqrt{7}\) . (7 - 3)

= 4\(\sqrt{7}\)

5. \(2.\left(\sqrt{10}-\sqrt{2}\right)\). \(\sqrt{4+\sqrt{6-2\sqrt{5}}}\)

= \(2.\left(\sqrt{10}-\sqrt{2}\right)\) . \(\sqrt{4+\sqrt{5}-1}\)

= \(2.\left(\sqrt{10}-\sqrt{2}\right)\) . \(\sqrt{3+\sqrt{5}}\)

= \(\left(\sqrt{10}-\sqrt{2}\right)\) . \(\sqrt{12+4\sqrt{5}}\)

= \(\left(\sqrt{10}-\sqrt{2}\right)\) . \(\left(\sqrt{10}+\sqrt{2}\right)\)

= \(\left(\sqrt{10}\right)^2-\left(\sqrt{2}\right)^2\)

= 10 - 2

= 8

6. \(\left(4\sqrt{2}+\sqrt{30}\right)\). \(\left(\sqrt{5}-\sqrt{3}\right)\). \(\sqrt{4-\sqrt{15}}\)

= \(\sqrt{2}\)\(\left(4+\sqrt{15}\right)\) . \(\left(\sqrt{5}-\sqrt{3}\right)\) . \(\sqrt{4-\sqrt{15}}\)

= \(\left(4+\sqrt{15}\right)\) . \(\left(\sqrt{5}-\sqrt{3}\right)\) . \(\sqrt{8-2\sqrt{15}}\)

= \(\left(4+\sqrt{15}\right)\) . \(\left(\sqrt{5}-\sqrt{3}\right)\) . \(\left(\sqrt{5}-\sqrt{3}\right)\)

= \(\left(4+\sqrt{15}\right)\) . \(\left(\sqrt{5}-\sqrt{3}\right)^2\)

= \(\left(4+\sqrt{15}\right)\). \(\left(8-2\sqrt{15}\right)\)

= 32 - \(8\sqrt{15}\) + \(8\sqrt{15}\) - 30

= 2

7. \(\left(7-\sqrt{14}\right)\) . \(\sqrt{9-2\sqrt{14}}\)

= \(\sqrt{7}\) \(\left(\sqrt{7}-\sqrt{2}\right)\). \(\left(\sqrt{7}-\sqrt{2}\right)\)

= \(\sqrt{7}\). \(\left(\sqrt{7}-\sqrt{2}\right)^2\)

= \(\sqrt{7}\) . \(\left(9-2\sqrt{14}\right)\)

= 9\(\sqrt{7}\) - 14\(\sqrt{2}\)

TICK MÌNH NHA!

15 tháng 8 2019

Bạn thông minh ghê! yeu

Rút gọn biểu thức: 1) \(\sqrt{12}+5\sqrt{3}-\sqrt{48}\) 2) \(5\sqrt{5}+\sqrt{20}-3\sqrt{45}\) 3) \(2\sqrt{32}+4\sqrt{8}-5\sqrt{18}\) 4) \(3\sqrt{12}-4\sqrt{27}+5\sqrt{48}\) 5) \(\sqrt{12}+\sqrt{75}-\sqrt{27}\) 6) \(2\sqrt{18}-7\sqrt{2}+\sqrt{162}\) 7) \(3\sqrt{20}-2\sqrt{45}+4\sqrt{5}\) 8) \(\left(\sqrt{2}+2\right)\sqrt{2}-2\sqrt{2}\) 9) \(\dfrac{1}{\sqrt{5}-1}-\dfrac{1}{\sqrt{5}+}\) 10) \(\dfrac{1}{\sqrt{5}-2}+\dfrac{1}{\sqrt{5}+2}\) 11)...
Đọc tiếp

Rút gọn biểu thức:

1) \(\sqrt{12}+5\sqrt{3}-\sqrt{48}\)

2) \(5\sqrt{5}+\sqrt{20}-3\sqrt{45}\)

3) \(2\sqrt{32}+4\sqrt{8}-5\sqrt{18}\)

4) \(3\sqrt{12}-4\sqrt{27}+5\sqrt{48}\)

5) \(\sqrt{12}+\sqrt{75}-\sqrt{27}\)

6) \(2\sqrt{18}-7\sqrt{2}+\sqrt{162}\)

7) \(3\sqrt{20}-2\sqrt{45}+4\sqrt{5}\)

8) \(\left(\sqrt{2}+2\right)\sqrt{2}-2\sqrt{2}\)

9) \(\dfrac{1}{\sqrt{5}-1}-\dfrac{1}{\sqrt{5}+}\)

10) \(\dfrac{1}{\sqrt{5}-2}+\dfrac{1}{\sqrt{5}+2}\)

11) \(\dfrac{2}{4-3\sqrt{2}}-\dfrac{2}{4+3\sqrt{2}}\)

12) \(\dfrac{2+\sqrt{2}}{1+\sqrt{2}}\)

13) \(\left(\sqrt{28}-2\sqrt{14}+\sqrt{7}\right)\sqrt{7}+7\sqrt{8}\)

14) \(\left(\sqrt{14}-3\sqrt{2}\right)^2+6\sqrt{28}\)

15) \(\left(\sqrt{6}-\sqrt{5}\right)^2-\sqrt{120}\)

16) \(\left(2\sqrt{3}-3\sqrt{2}\right)^2+2\sqrt{6}+3\sqrt{24}\)

17) \(\sqrt{\left(1-\sqrt{2}\right)^2}+\sqrt{\left(\sqrt{2}+3\right)^2}\)

18) \(\sqrt{\left(\sqrt{3}-2\right)^2}+\sqrt{\left(\sqrt{3}-1\right)^2}\)

19) \(\sqrt{\left(\sqrt{5}-3\right)^2}+\sqrt{\left(\sqrt{5}-2\right)^2}\)

20) \(\left(\sqrt{19}-3\right)\left(\sqrt{19}+3\right)\)

4
3 tháng 1 2019

1) \(\sqrt{12}\)+\(5\sqrt{3}-\sqrt{48}\)
= \(2\sqrt{3}+5\sqrt{3}-4\sqrt{3}\)
= (2+5-4).\(\sqrt{3}\)
= \(3\sqrt{3}\)

2)\(5\sqrt{5}+\sqrt{20}-3\sqrt{45}\)
= \(5\sqrt{5}+2\sqrt{5}-3.3\sqrt{5}\)
= \(5\sqrt{5}+2\sqrt{5}-9\sqrt{5}\)
= \(\left(5+2-9\right).\sqrt{5}\)
= -2\(\sqrt{2}\)

3)\(3\sqrt{32}+4\sqrt{8}-5\sqrt{18}\)
= \(3.4\sqrt{2}+4.2\sqrt{2}-5.3\sqrt{2} \)
= 12\(\sqrt{2}\) \(+8\sqrt{2}\) \(-15\sqrt{2}\)
= \(\left(12+8-15\right).\sqrt{2}\)
= \(5\sqrt{2}\)

4)\(3\sqrt{12}-4\sqrt{27}+5\sqrt{48}\)
= \(3.2\sqrt{3}-4.3\sqrt{3}+5.4\sqrt{3}\)
= \(6\sqrt{3}-12\sqrt{3}+20\sqrt{3}\)
= \(\left(6-12+20\right).\sqrt{3}\)
= \(14\sqrt{3}\)

5)\(\sqrt{12}+\sqrt{75}-\sqrt{27}\)
= \(2\sqrt{3}+5\sqrt{3}-3\sqrt{3}\)
= \(\left(2+5-3\right).\sqrt{3}\)
= \(4\sqrt{3}\)

6) \(2\sqrt{18}-7\sqrt{2}+\sqrt{162}\)
= \(2.3\sqrt{2}-7\sqrt{2}+9\sqrt{2}\)
= 6\(\sqrt{2}-7\sqrt{2}+9\sqrt{2}\)
= \(\left(6-7+9\right).\sqrt{2}\)
= 8\(\sqrt{2}\)

7)\(3\sqrt{20}-2\sqrt{45}+4\sqrt{5}\)
= \(3.2\sqrt{5}-2.3\sqrt{5}+4\sqrt{5}\)
= \(6\sqrt{5}-6\sqrt{5}+4\sqrt{5}\)
= \(4\sqrt{5}\)

8)\(\left(\sqrt{2}+2\right).\sqrt{2}-2\sqrt{2}\)
= \(\left(\sqrt{2}\right)^2+2\sqrt{2}-2\sqrt{2}\)
= 2


4 tháng 1 2019
https://i.imgur.com/pmexRQv.jpg
21 tháng 7 2018

a ) \(\sqrt{3+2\sqrt[]{2}}\) - \(\sqrt{2}\)

= \(\sqrt{\left(1+\sqrt{2}\right)^2}\) -\(\sqrt{2}\)

= 1 + \(\sqrt{2}\) - \(\sqrt{2}\)

=1

b) \(\sqrt{16-6\sqrt{7}}\)-\(2\sqrt{7}\)

= \(\sqrt{\left(3-\sqrt{7}\right)^2}\)-\(2\sqrt{7}\)

= 3 - \(\sqrt{7}\)-\(2\sqrt{7}\)

=3 - 3\(\sqrt{7}\)

c )\(\sqrt{30+12\sqrt{6}}\) +\(\sqrt{30-12\sqrt{6}}\)

= \(\sqrt{6\left(5+2\sqrt{6}\right)}\) + \(\sqrt{6\left(5-2\sqrt{6}\right)}\)

=\(\sqrt{6}\) (\(\sqrt{5+2\sqrt{6}}\) + \(\sqrt{5-2\sqrt{6}}\) )

=\(\sqrt{6}\) [\(\sqrt{\left(1+\sqrt{6}\right)^2}\) +\(\sqrt{\left(1-\sqrt{6}\right)^2}\)

=\(\sqrt{6}\) (1 + \(\sqrt{6}\) + \(\sqrt{6}\) -\(1\))

= 2 . 6

=12

d)\(\sqrt{9-4\sqrt{5}}\) -\(\sqrt{5}\)

=\(\sqrt{\left(2-\sqrt{5}\right)}^2\) -\(\sqrt{5}\)

=\(\sqrt{5}\) -\(2\) -\(\sqrt{5}\)

=2

e ) \(\sqrt{\left(-2\right)^6}\) \(+\) \(\sqrt{\left(-3\right)}^4\)

= \(\left|\left(-2\right)^3\right|\) + \(\left|\left(-3\right)^2\right|\)

=8 + 9

=17

3 tháng 9 2019

a) \(\sqrt{3^2}-\sqrt{7^2}+\sqrt{\left(-1\right)^2}=|3|-|7|+|-1|=3-7+1=-3\)

b) \(-2\sqrt{\left(-2\right)^2}+\sqrt{\left(-5\right)^2}+\sqrt{3^2}=-2|2|+|-5|+\left|3\right|=-4+5+3=4\)

c) \(\sqrt{\left(2-\sqrt{2}\right)^2}+\sqrt{\left(2+\sqrt{2}\right)^2}=\left|2-\sqrt{2}\right|+\left|2+\sqrt{2}\right|=2-\sqrt{2}+2+\sqrt{2}=4\)

d) \(\sqrt{\left(3\sqrt{2}\right)^2}-\sqrt{\left(1-\sqrt{2}\right)^2}=\left|3\sqrt{2}\right|-\left|1-\sqrt{2}\right|=3\sqrt{2}-\sqrt{2}+1=2\sqrt{2}+1\)

e) \(\sqrt{3-2\sqrt{2}}+\sqrt{3+2\sqrt{2}}=\sqrt{\left(\sqrt{2}-1\right)^2}+\sqrt{\left(\sqrt{2}+1\right)^2}=\left|\sqrt{2}-1\right|+\left|\sqrt{2}+1\right|=\sqrt{2}-1+\sqrt{2}+1=2\sqrt{2}\)

f) \(\sqrt{9-4\sqrt{5}}+\sqrt{9+4\sqrt{5}}=\sqrt{\left(\sqrt{5}-2\right)^2}+\sqrt{\left(\sqrt{5}+2\right)^2}=\left|\sqrt{5}-2\right|+\left|\sqrt{5}+2\right|=\sqrt{5}-2+\sqrt{5}+2=2\sqrt{5}\)

g) \(\sqrt{9-4\sqrt{2}}+\sqrt{11-6\sqrt{2}}=\sqrt{9-2\sqrt{8}}+\sqrt{2-2\sqrt{2}.3+9}=\sqrt{\left(\sqrt{8}-1\right)^2}+\sqrt{\left(\sqrt{2}-3\right)^2}=\sqrt{8}-1+3-\sqrt{2}=2-\sqrt{2}+\sqrt{8}\)

h) \(\sqrt{12+8\sqrt{2}}+\sqrt{6-4\sqrt{2}}=\sqrt{12+2\sqrt{4}\sqrt{8}}+\sqrt{6-2\sqrt{2}\sqrt{4}}=\sqrt{\left(\sqrt{4}+\sqrt{8}\right)^2}+\sqrt{\left(\sqrt{4}-\sqrt{2}\right)^2}=\sqrt{4}+\sqrt{8}+\sqrt{4}-\sqrt{2}\)

k) \(\left(2-\sqrt{3}\right)\sqrt{7+4\sqrt{3}}=\left(2-\sqrt{3}\right)\sqrt{\left(\sqrt{3}+2\right)^2}=\left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right)=4-3=1\)