\(\sqrt{8-\sqrt{60}}-\sqrt{23-\sqrt{240}}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 7 2019

\( A = \sqrt {8 - \sqrt {60} } - \sqrt {23 - \sqrt {240} } \\ A = \sqrt {8 - 2\sqrt {15} } - \sqrt {23 - 4\sqrt {15} } \\ A = \sqrt {{{\left( {\sqrt 3 - \sqrt 5 } \right)}^2}} - \sqrt {{{\left( {\sqrt 3 - 2\sqrt 5 } \right)}^2}} \\ A = \sqrt 5 - \sqrt 3 - \left( {2\sqrt 5 - \sqrt 3 } \right)\\ A = \sqrt 5 - \sqrt 3 - 2\sqrt 5 + \sqrt 3 \\ A = - \sqrt 5 \)

5 tháng 7 2019

\(\sqrt{8-2\sqrt{15}}+\sqrt{48+6\sqrt{15}}\\ =\sqrt{5-2\cdot\sqrt{5}\cdot\sqrt{3}+3}+\sqrt{45+2\cdot3\sqrt{5}\cdot\sqrt{3}+3}\\ =\sqrt{\left(\sqrt{5}\right)^2-2\cdot\sqrt{5}\cdot\sqrt{3}+\left(\sqrt{3}\right)^2}+\sqrt{\left(3\sqrt{5}\right)^2+2\cdot3\sqrt{5}\cdot\sqrt{3}+\left(\sqrt{3}\right)^2}\\ =\sqrt{\left(\sqrt{5}-\sqrt{3}\right)^2}+\sqrt{\left(3\sqrt{5}+\sqrt{3}\right)^2}\\ =\sqrt{5}-\sqrt{3}+3\sqrt{5}+\sqrt{3}=4\sqrt{5}\)

5 tháng 7 2019

\(\sqrt{8-\sqrt{60}}-\sqrt{23-\sqrt{240}}\\ =\sqrt{8-\sqrt{4\cdot15}}-\sqrt{23-\sqrt{4\cdot60}}\\ =\sqrt{8-2\sqrt{15}}-\sqrt{23-2\sqrt{60}}\\ =\sqrt{\left(\sqrt{5}-\sqrt{3}\right)^2}-\sqrt{20-2\cdot\sqrt{20}\cdot\sqrt{3}+3}\\ =\sqrt{5}-\sqrt{3}-\sqrt{\left(\sqrt{20}-\sqrt{3}\right)^2}\\ =\sqrt{5}-\sqrt{3}-\sqrt{20}+\sqrt{3}\\ =\sqrt{5}-2\sqrt{5}=-\sqrt{5}\)

24 tháng 6 2018

a)\(\sqrt{28-16\sqrt{3}}=\sqrt{12-2.4.2\sqrt{3}+16}=\sqrt{\left(2\sqrt{3}\right)^2-2.4.2\sqrt{3}+4^2}=\sqrt{\left(2\sqrt{3}-4\right)^2}\)\(=\left|2\sqrt{3}-4\right|=4-2\sqrt{3}\)

b) \(\sqrt{29-12\sqrt{5}}=\sqrt{3^2-2.3.2\sqrt{5}+\left(2\sqrt{5}\right)^2}=\sqrt{\left(3-2\sqrt{5}\right)^2}=2\sqrt{5}-3\)

c)\(\sqrt{23-\sqrt{240}}=\sqrt{23-4\sqrt{15}}=\sqrt{\left(2\sqrt{5}\right)^2-2.\sqrt{3}.2\sqrt{5}+\left(\sqrt{3}\right)^2}\)

\(=\sqrt{\left(2\sqrt{5}-\sqrt{3}\right)^2}=2\sqrt{5}-\sqrt{3}\)

d)\(\sqrt{33-12\sqrt{6}}=\sqrt{\left(2\sqrt{6}\right)^2-2.3.2\sqrt{6}+3^2}=\sqrt{\left(2\sqrt{6}-3\right)^2}=2\sqrt{6}-3\)

22 tháng 7 2020

Trả lời:

a)\(\sqrt{28-16\sqrt{3}}\)

\(=\sqrt{16-16\sqrt{3}+12}\)

\(=\sqrt{\left(4-2\sqrt{3}\right)^2}\)

\(=4-2\sqrt{3}\)

b) \(\sqrt{29-12\sqrt{5}}\)

\(=\sqrt{20-12\sqrt{5}+9}\)

\(=\sqrt{\left(2\sqrt{5}-3\right)^2}\)

\(=2\sqrt{5}-3\)

c) \(\sqrt{23-\sqrt{240}}\)

\(=\sqrt{23-4\sqrt{15}}\)

\(=\sqrt{20-4\sqrt{15}+3}\)

\(=\sqrt{\left(2\sqrt{5}-\sqrt{3}\right)^2}\)

\(=2\sqrt{5}-\sqrt{3}\)

d) \(\sqrt{33-12\sqrt{6}}\)

\(=\sqrt{24-12\sqrt{6}+9}\)

\(=\sqrt{\left(2\sqrt{6}-3\right)^2}\)

\(=2\sqrt{6}-3\)

10 tháng 6 2017

Sao tổng này không thấy quy luật đâu hết mà dùng dấu ... vậy?

15 tháng 6 2017

tui làm đc ròi ạ

31 tháng 5 2018

1)d) \(\sqrt{23+8\sqrt{7}}-\sqrt{7}\)

\(=\sqrt{4^2+2.4.\sqrt{7}+\sqrt{7^2}}-\sqrt{7}\)

\(=\sqrt{\left(4+\sqrt{7}\right)^2}-\sqrt{7}\)

\(=4+\sqrt{7}-\sqrt{7}\)

\(=4\)

28 tháng 8 2018

a) \(\sqrt{9-4\sqrt{5}}+\sqrt{5}\)

=\(\sqrt{\left(\sqrt{2}\right)^2-2.2\sqrt{5}+\left(\sqrt{5}\right)^2}+\sqrt{5}\)

=\(\sqrt{\left(\sqrt{2}-\sqrt{5}\right)^2}+\sqrt{5}\)

=\(\left|\sqrt{2}-\sqrt{5}\right|+\sqrt{5}\)

=\(\sqrt{2}-\sqrt{5}+\sqrt{5}\)

=\(\sqrt{2}\)

NV
17 tháng 6 2019

\(A=\sqrt{\sqrt{5}-\sqrt{3-\left(2\sqrt{5}-3\right)}}\)

\(=\sqrt{\sqrt{5}-\sqrt{6-2\sqrt{5}}}\)

\(=\sqrt{\sqrt{5}-\left(\sqrt{5}-1\right)}=\sqrt{1}=1\)

\(A=\sqrt[3]{8-\sqrt{60}}+\sqrt[3]{8+\sqrt{60}}\) xem lại đề con này

\(A=\frac{2\sqrt{3+\sqrt{5-\left(2\sqrt{3}+1\right)}}}{\sqrt{6}+\sqrt{2}}=\frac{2\sqrt{3+\sqrt{4-2\sqrt{3}}}}{\sqrt{6}+\sqrt{2}}=\frac{2\sqrt{3+\sqrt{3}-1}}{\sqrt{6}+\sqrt{2}}\)

\(=\frac{2\sqrt{4+2\sqrt{3}}}{2\left(\sqrt{3}+1\right)}=\frac{\sqrt{3}+1}{\sqrt{3}+1}=1\)

25 tháng 8 2017

a) \(9+4\sqrt{5}=4+4\sqrt{5}+5=2^2+2\cdot2\sqrt{5}+\left(\sqrt{5}\right)^2=\left(\sqrt{5}+2\right)^2\left(ĐPCM\right)\)

21 tháng 9 2017

a) \(9+4\sqrt{5}=\left(\sqrt{5}\right)^2+2.\sqrt{5}.2+2^2=\left(\sqrt{5}+2\right)^2\left(đpcm\right)\)

b)\(\sqrt{9-4\sqrt{5}}-\sqrt{5}=\sqrt{\left(\sqrt{5}-2\right)^2}-\sqrt{5}=\sqrt{5}-2-\sqrt{5}=-2\left(đpcm\right)\)

c)\(\left(4-\sqrt{7}\right)^2=16-8\sqrt{7}+7=23-8\sqrt{7}\left(đpcm\right)\)

d)\(\sqrt{23+8\sqrt{7}}-\sqrt{7}=\sqrt{\left(4+\sqrt{7}\right)^2}-\sqrt{7}=4+\sqrt{7}-\sqrt{7}=4\left(đpcm\right)\)

6 tháng 9 2020

a) \(\sqrt{7}.\sqrt{55}.\sqrt{35}.\sqrt{11}=\sqrt{7.55.35.11}=\sqrt{7.5.11.5.7.11}=\sqrt{\left(5.7.11\right)^2}\)

\(=5.7.11=385\)

b) \(\frac{\sqrt{144}}{23}:\frac{\sqrt{16}}{23}=\frac{\sqrt{144}}{23}.\frac{23}{\sqrt{16}}=\frac{\sqrt{144}}{\sqrt{16}}=\sqrt{\frac{144}{16}}=\sqrt{9}=3\)

c) \(\frac{\sqrt{5}}{\sqrt{125}}=\sqrt{\frac{5}{125}}=\sqrt{\frac{1}{25}}=\frac{1}{5}\)

d) \(\frac{\sqrt{135}}{\sqrt{15}}=\sqrt{\frac{135}{15}}=\sqrt{9}=3\)

6 tháng 9 2020

a)\(\sqrt{7}.\sqrt{55}.\sqrt{35}.\sqrt{11}=\left(\sqrt{7}.\sqrt{355}\right).\left(\sqrt{35}.\sqrt{11}\right)=\sqrt{385}.\sqrt{385}=385\)

b) \(\frac{\sqrt{144}}{23}:\frac{\sqrt{16}}{23}=\frac{12}{23}.\frac{23}{4}=3\)

c) \(\frac{\sqrt{5}}{\sqrt{125}}=\sqrt{\frac{5}{125}}=\sqrt{\frac{1}{25}}=\frac{1}{\sqrt{5}}=\frac{\sqrt{5}}{5}\)

d) \(\frac{\sqrt{135}}{\sqrt{15}}=\sqrt{\frac{135}{15}}=\sqrt{9}=3\)

23 tháng 6 2016

a) \(\sqrt{9-4\sqrt{5}}-\sqrt{5}=\sqrt{\left(\sqrt{5}-2\right)^2}-\sqrt{5}=\left|\sqrt{5}-2\right|-\sqrt{5}=\sqrt{5}-2-\sqrt{5}=-2\)

b) \(\left(4-\sqrt{7}\right)^2=4^2-2.4.\sqrt{7}+\sqrt{7}^2=16-8\sqrt{7}+7=23-8\sqrt{7}\)

c)  \(\sqrt{23+8\sqrt{7}}=\sqrt{\left(4+\sqrt{7}\right)^2}=\left|4+\sqrt{7}\right|=\sqrt{7}+4\)

28 tháng 5 2018

Câu b nhé:

Ta có:

\(\dfrac{1}{\sqrt{25}+\sqrt{24}}+\dfrac{1}{\sqrt{24}+\sqrt{23}}+\dfrac{1}{\sqrt{23}+\sqrt{22}}+...+\dfrac{1}{\sqrt{2}+\sqrt{1}}\\ =\dfrac{\sqrt{25}-\sqrt{24}}{\left(\sqrt{25}+\sqrt{24}\right)\left(\sqrt{25}-\sqrt{24}\right)}+\dfrac{\sqrt{24}-\sqrt{23}}{\left(\sqrt{24}+\sqrt{23}\right)\left(\sqrt{24}-\sqrt{23}\right)}+...+\dfrac{\sqrt{2}-\sqrt{1}}{\left(\sqrt{2}+\sqrt{1}\right)\left(\sqrt{2}-\sqrt{1}\right)}\\ =\sqrt{25}-\sqrt{24}+\sqrt{24}-\sqrt{23}+...+\sqrt{2}-\sqrt{1}\\ =5-1=4\left(đpcm\right)\)

28 tháng 6 2018

a) \(\sqrt{21-6\sqrt{6}}+\sqrt{9+2\sqrt{18}}-2\sqrt{6+3\sqrt{3}}=0\) (*)

\(\Leftrightarrow\left(3\sqrt{2}-\sqrt{3}\right)+\left(\sqrt{3}+\sqrt{6}\right)-\left(3+\sqrt{3}\right)\cdot\sqrt{2}=0\)

\(\Leftrightarrow0=0\) (luôn đúng)

Vậy (*) luôn đúng