Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+....+\dfrac{1}{99.100}\)
= \(\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+....+\dfrac{1}{99}-\dfrac{1}{100}\)
=\(\dfrac{1}{1}+0+0+...+0-\dfrac{1}{100}\)
=\(1-\dfrac{1}{100}\)
= \(\dfrac{99}{100}\)
a) 11.2+12.3+13.4+....+199.10011.2+12.3+13.4+....+199.100
= 11−12+12−13+13−14+....+199−110011−12+12−13+13−14+....+199−1100
=11+0+0+...+0−110011+0+0+...+0−1100
=1−11001−1100
= 99100
\(\frac{9}{1.2}+\frac{9}{2.3}+....+\frac{9}{98.99}+\frac{9}{99.100}\)
\(=9.\frac{1}{1.2}+9.\frac{1}{2.3}+....+9.\frac{1}{98.99}+9.\frac{1}{99.100}\)
\(=9.\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{98.99}+\frac{1}{99.100}\right)\)
\(=9.\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+....+\frac{1}{98}-\frac{1}{99}+\frac{1}{99}-\frac{1}{100}\right)\)
\(=9.\left(1-\frac{1}{100}\right)=9.\frac{99}{100}=\frac{891}{100}\)
A= \(\frac{1^2}{1.2}\). \(\frac{2^2}{2.3}\). \(\frac{3^2}{3.4}\). \(\frac{4^2}{5.6}\).
A= \(\frac{1.1}{1.2}\). \(\frac{2.2}{2.3}\). \(\frac{3.3}{3.4}\). \(\frac{4.4}{4.5}\).
A= \(\frac{1.2.3.4}{1.2.3.4}\). \(\frac{1.2.3.4}{2.3.4.5}\).
A= 1. \(\frac{1}{5}\).
A= \(\frac{1}{5}\).
Vậy A= \(\frac{1}{5}\).
B= \(\frac{3}{4}\). \(\frac{8}{9}\). \(\frac{15}{16}\)..... \(\frac{899}{900}\).
B= \(\frac{1.3}{2.2}\). \(\frac{2.4}{3.3}\). \(\frac{3.5}{4.4}\)..... \(\frac{29.31}{30.30}\).
B= \(\frac{1.2.3.....29}{2.3.4.....30}\). \(\frac{3.4.5.....31}{2.3.4.....30}\).
B= \(\frac{1}{30}\). \(\frac{31}{2}\).
B= \(\frac{31}{60}\).
Vậy B= \(\frac{31}{60}\).
Đặt \(A=\frac{9}{1.2}+\frac{9}{2.3}+...+\frac{9}{99.100}\)
\(A=9.\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}\right)\)
\(A=9.\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\right)\)
\(A=9.\left(1-\frac{1}{100}\right)\)
\(A=9.\frac{99}{100}=\frac{891}{100}\)
Ủng hộ mk nha !!! ^_^
\(\frac{9}{1.2}+\frac{9}{2.3}+\frac{9}{3.4}+.......+\frac{9}{99.100}\)
\(=9.\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{99.100}\right)\)
\(=9.\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+....+\frac{1}{99}-\frac{1}{100}\right)\)
\(=9.\left(1-\frac{1}{100}\right)\)
\(=9.\frac{99}{100}=\frac{891}{100}\)
A = \(\dfrac{9}{1.2}\)+ \(\dfrac{9}{2.3}\)+\(\dfrac{9}{3.4}\)+......+\(\dfrac{99}{99.100}\)
A = 9( \(\dfrac{1}{1.2}\)+\(\dfrac{1}{2.3}\)+\(\dfrac{1}{3.4}\)+.......+\(\dfrac{1}{99.100}\))
A = 9( 1-\(\dfrac{1}{2}\)+\(\dfrac{1}{2}\)-\(\dfrac{1}{3}\)+........+\(\dfrac{1}{99}\)-\(\dfrac{1}{100}\))
A = 9 ( 1 - \(\dfrac{1}{100}\))
A = 9 . \(\dfrac{99}{100}\)
A = \(\dfrac{891}{100}\)
\(A=\dfrac{9}{1\cdot2}+\dfrac{9}{2\cdot3}+\dfrac{9}{3\cdot4}+...+\dfrac{9}{98\cdot99}+\dfrac{9}{99\cdot100}\)
\(=9\left(\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{98\cdot99}+\dfrac{1}{99\cdot100}\right)\)
\(=9\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{98}-\dfrac{1}{99}+\dfrac{1}{99}-\dfrac{1}{100}\right)\)
\(=9\left(1-\dfrac{1}{100}\right)\)
\(=9\left(\dfrac{100}{100}-\dfrac{1}{100}\right)\)
\(=9\cdot\dfrac{99}{100}\)
\(=\dfrac{891}{100}\)
Bài 1 mik học xong quên hết òi (mấy bài kia là hok biết luôn :V)
a)S = 1.2 + 2.3 + 3.4 +...+ 99.100
3S=(1.2+2.3+3.4+...+99.10).3
3S=1.2.3+2.3.3+3.4.3+...+99.100.3
3S=1.2.(3-0)+2.3.(4-1)+3.4.(5-2)+...+99.100.(101-98)
3S=(1.2.3+2.3.4+...+99.100.101)-(0.1.2+1.2.3+...+98.99.100)
3S=99.100.101-0.1.2
3S=999900
S=999900:3
S=333300
Vậy S=333300