\(2^{19}\).
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 10 2017

a)S = 1.2 + 2.3 + 3.4 +...+ 99.100

3S=(1.2+2.3+3.4+...+99.10).3

3S=1.2.3+2.3.3+3.4.3+...+99.100.3

3S=1.2.(3-0)+2.3.(4-1)+3.4.(5-2)+...+99.100.(101-98)

3S=(1.2.3+2.3.4+...+99.100.101)-(0.1.2+1.2.3+...+98.99.100)

3S=99.100.101-0.1.2

3S=999900

S=999900:3

S=333300

Vậy S=333300

5 tháng 3 2018

a) \(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+....+\dfrac{1}{99.100}\)

= \(\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+....+\dfrac{1}{99}-\dfrac{1}{100}\)

=\(\dfrac{1}{1}+0+0+...+0-\dfrac{1}{100}\)

=\(1-\dfrac{1}{100}\)

= \(\dfrac{99}{100}\)

6 tháng 3 2018

a) 11.2+12.3+13.4+....+199.10011.2+12.3+13.4+....+199.100

= 11−12+12−13+13−14+....+199−110011−12+12−13+13−14+....+199−1100

=11+0+0+...+0−110011+0+0+...+0−1100

=1−11001−1100

= 99100

16 tháng 7 2016

Ai giúp mik , mik sẽ cho

16 tháng 7 2016

đề bài là gì mới đc chứ ? 

29 tháng 3 2018

\(\frac{9}{1.2}+\frac{9}{2.3}+....+\frac{9}{98.99}+\frac{9}{99.100}\)

\(=9.\frac{1}{1.2}+9.\frac{1}{2.3}+....+9.\frac{1}{98.99}+9.\frac{1}{99.100}\)

\(=9.\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{98.99}+\frac{1}{99.100}\right)\)

\(=9.\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+....+\frac{1}{98}-\frac{1}{99}+\frac{1}{99}-\frac{1}{100}\right)\)

\(=9.\left(1-\frac{1}{100}\right)=9.\frac{99}{100}=\frac{891}{100}\)

24 tháng 3 2018

A= \(\frac{1^2}{1.2}\)\(\frac{2^2}{2.3}\)\(\frac{3^2}{3.4}\)\(\frac{4^2}{5.6}\).

A= \(\frac{1.1}{1.2}\)\(\frac{2.2}{2.3}\)\(\frac{3.3}{3.4}\)\(\frac{4.4}{4.5}\).

A= \(\frac{1.2.3.4}{1.2.3.4}\)\(\frac{1.2.3.4}{2.3.4.5}\).

A= 1. \(\frac{1}{5}\).

A= \(\frac{1}{5}\).

Vậy A= \(\frac{1}{5}\).

B= \(\frac{3}{4}\)\(\frac{8}{9}\)\(\frac{15}{16}\)..... \(\frac{899}{900}\).

B= \(\frac{1.3}{2.2}\)\(\frac{2.4}{3.3}\)\(\frac{3.5}{4.4}\)..... \(\frac{29.31}{30.30}\).
B= \(\frac{1.2.3.....29}{2.3.4.....30}\)\(\frac{3.4.5.....31}{2.3.4.....30}\).

B= \(\frac{1}{30}\)\(\frac{31}{2}\).

B= \(\frac{31}{60}\).

Vậy B= \(\frac{31}{60}\).

16 tháng 7 2016

                     Đặt \(A=\frac{9}{1.2}+\frac{9}{2.3}+...+\frac{9}{99.100}\)

                            \(A=9.\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}\right)\)

                           \(A=9.\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\right)\)

                        \(A=9.\left(1-\frac{1}{100}\right)\)

                      \(A=9.\frac{99}{100}=\frac{891}{100}\)

                 Ủng hộ mk nha !!! ^_^

16 tháng 7 2016

\(\frac{9}{1.2}+\frac{9}{2.3}+\frac{9}{3.4}+.......+\frac{9}{99.100}\)

\(=9.\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{99.100}\right)\)

\(=9.\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+....+\frac{1}{99}-\frac{1}{100}\right)\)

\(=9.\left(1-\frac{1}{100}\right)\)

\(=9.\frac{99}{100}=\frac{891}{100}\)

21 tháng 3 2018

a, = 1

b = 99/100

c = -17/99999995

21 tháng 3 2018

b) \(\frac{1}{2}+\frac{1}{2.3}+...+\frac{1}{99.100}\)

\(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}\)

\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)

\(1-\frac{1}{100}=\frac{99}{100}\)

17 tháng 4 2017

A = \(\dfrac{9}{1.2}\)+ \(\dfrac{9}{2.3}\)+\(\dfrac{9}{3.4}\)+......+\(\dfrac{99}{99.100}\)

A = 9( \(\dfrac{1}{1.2}\)+\(\dfrac{1}{2.3}\)+\(\dfrac{1}{3.4}\)+.......+\(\dfrac{1}{99.100}\))

A = 9( 1-\(\dfrac{1}{2}\)+\(\dfrac{1}{2}\)-\(\dfrac{1}{3}\)+........+\(\dfrac{1}{99}\)-\(\dfrac{1}{100}\))

A = 9 ( 1 - \(\dfrac{1}{100}\))

A = 9 . \(\dfrac{99}{100}\)

A = \(\dfrac{891}{100}\)

18 tháng 4 2017

\(A=\dfrac{9}{1\cdot2}+\dfrac{9}{2\cdot3}+\dfrac{9}{3\cdot4}+...+\dfrac{9}{98\cdot99}+\dfrac{9}{99\cdot100}\)

\(=9\left(\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{98\cdot99}+\dfrac{1}{99\cdot100}\right)\)

\(=9\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{98}-\dfrac{1}{99}+\dfrac{1}{99}-\dfrac{1}{100}\right)\)

\(=9\left(1-\dfrac{1}{100}\right)\)

\(=9\left(\dfrac{100}{100}-\dfrac{1}{100}\right)\)

\(=9\cdot\dfrac{99}{100}\)

\(=\dfrac{891}{100}\)

Bài 1: a) \(A=\frac{5}{11.16}+\frac{5}{16.21}+\frac{5}{21.26}+...+\frac{5}{61.66}\) b) \(B=\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}\) c) \(C=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{1989.1990}\)Bài 2: a. Tính tổng: \(M=\frac{10}{56}+\frac{10}{140}+\frac{10}{260}+...+\frac{10}{1400}\) b. Cho: \(S=\frac{3}{10}+\frac{3}{11}+\frac{3}{12}+\frac{3}{13}+\frac{3}{14}\) chứng minh rằng 1 < S < 2Bài 3: Tính giá trị của biểu...
Đọc tiếp

Bài 1: a) \(A=\frac{5}{11.16}+\frac{5}{16.21}+\frac{5}{21.26}+...+\frac{5}{61.66}\)

b) \(B=\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}\)

c) \(C=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{1989.1990}\)

Bài 2: a. Tính tổng: \(M=\frac{10}{56}+\frac{10}{140}+\frac{10}{260}+...+\frac{10}{1400}\)

b. Cho: \(S=\frac{3}{10}+\frac{3}{11}+\frac{3}{12}+\frac{3}{13}+\frac{3}{14}\) chứng minh rằng 1 < S < 2

Bài 3: Tính giá trị của biểu thức sau:

\(A=\left(\frac{1}{7}+\frac{1}{23}-\frac{1}{1009}\right):\left(\frac{1}{23}+\frac{1}{7}-\frac{2}{2009}+\frac{1}{7}.\frac{1}{23}.\frac{1}{2009}\right)+1:\left(30.1009-160\right)\)

Bài 4: Tính nhanh:

\(\text{a) 35 . 34 + 35 . 86 + 67 . 75 + 65 . 45}\)

\(\text{b) 21 . }7^2-11.7^2+90.7^2+49.125.16\)

Bài 5: Thực hiện phép tinh sau:

a. \(\frac{2181.729+243.81.27}{3^2.9^2.234+18.54+162.9+723.729}\)

b. \(\frac{1}{1.2+}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{98.99}+\frac{1}{99.100}\)

c. \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< 1\)

d. \(\frac{5.4^{15}-9^9-4.3^{20}}{5.2^{19}.6^{19}-7.2^{29}.27^6}\)

giúp mk nha! nhớ viết cách làm nha!

 

13
23 tháng 10 2016

Bài 1 mik học xong quên hết òi (mấy bài kia là hok biết luôn :V)

14 tháng 12 2016
A=\(\frac{5}{11.16}+\frac{5}{16.21}+\frac{5}{21.26}+....+\frac{5}{61.66}\)
A=\(\frac{5}{11}-\frac{5}{16}+\frac{5}{16}-\frac{5}{21}+...+\frac{5}{61}-\frac{5}{66}\)
A=5/11-5/66
A=25/66