\(\left(1-\frac{1}{1+2}\right).\left(1-\frac{1}{1+2+3}\right).\left(1-\frac{1}{...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
4 tháng 4 2020

Lời giải:

Xét công thức tổng quát:

$1+2+3+...+n=\frac{n(n+1)}{2}$

$\Rightarrow 1-\frac{1}{1+2+3+...+n}=1-\frac{2}{n(n+1)}=\frac{(n-1)(n+2)}{n(n+1)}$

Thay $n=2,3,...,2006$ ta thu được:

\(A=\frac{1.4}{2.3}.\frac{2.5}{3.4}.\frac{3.6}{4.5}....\frac{2005.2008}{2006.2007}\)

\(=\frac{(1.2.3...2005)(4.5.6...2008)}{(2.3.4...2006)(3.4.5...2007)}=\frac{1}{2006}.\frac{2008}{3}=\frac{1004}{3009}\)

AH
Akai Haruma
Giáo viên
3 tháng 4 2020

Lời giải:

Xét công thức tổng quát:

$1+2+3+...+n=\frac{n(n+1)}{2}$

$\Rightarrow 1-\frac{1}{1+2+3+...+n}=1-\frac{2}{n(n+1)}=\frac{(n-1)(n+2)}{n(n+1)}$

Thay $n=2,3,...,2006$ ta thu được:

\(A=\frac{1.4}{2.3}.\frac{2.5}{3.4}.\frac{3.6}{4.5}....\frac{2005.2008}{2006.2007}\)

\(=\frac{(1.2.3...2005)(4.5.6...2008)}{(2.3.4...2006)(3.4.5...2007)}=\frac{1}{2006}.\frac{2008}{3}=\frac{1004}{3009}\)

21 tháng 6 2015

a) \(\frac{\left(-1\right)}{4}^2+\frac{3}{8}.\left(\frac{-1}{6}\right)-\frac{3}{16}:\left(\frac{-1}{2}\right)=\left(\frac{-1}{4}\right)^2+\left(\frac{-3}{68}\right)-\left(\frac{-3}{8}\right)=\left(\frac{1}{16}\right)+\left(\frac{-3}{68}\right)-\left(\frac{-3}{8}\right)=\frac{5}{272}-\left(\frac{-3}{8}\right)=\frac{107}{272}\)

14 tháng 8 2017

câu g) 

\(G=\left(\frac{1}{4}-1\right)\left(\frac{1}{9}-1\right)\left(\frac{1}{16}-1\right)...\left(\frac{1}{121}-1\right).\)

\(=\frac{3}{4}\cdot\frac{8}{9}\cdot\frac{15}{16}...\cdot\frac{120}{121}\)

\(=\frac{3.\left(2.4\right).\left(3.5\right)...\left(10.12\right)}{2.2.3.3.4.4.5.5....11.11}\)

\(=\frac{12}{3}=4\)

14 tháng 8 2017

câu mình trả lời sai rồi thông cảm

5 tháng 8 2017

\(\left(\frac{1}{9}\right)^{2015}.9^{2015}-96^2:24^2=1^{2015}-4^2=1-16=-15\)

\(16\frac{2}{7}:\left(\frac{-3}{5}\right)-28\frac{2}{7}:\left(\frac{-3}{5}\right)=\left(16\frac{2}{7}-28\frac{2}{7}\right):\left(\frac{-3}{5}\right)=-12.\frac{-5}{3}=20\)

\(\left(-2\right)^3.\left(\frac{3}{4}-0,25\right):\left(2\frac{1}{4}-1\frac{1}{6}\right)=-8.\frac{1}{2}:\frac{13}{12}=-8.\frac{1}{2}.\frac{12}{13}=\frac{-48}{13}\)

9 tháng 2 2019

\(A=(1-\frac{1}{1+2})(1-\frac{1}{1+2+3})(1-\frac{1}{1+2+3+4})...(1-\frac{1}{1+2+3+...+2006})\)

\(A=(1-\frac{1}{3})(1-\frac{1}{6})(1-\frac{1}{10})...(1-\frac{1}{2013021})\)

\(A=\frac{2}{3}\cdot\frac{5}{6}\cdot\frac{9}{10}....\frac{2013020}{2013021}\)

9 tháng 2 2019

Sorry bạn máy tính mình có chút vấn đề để mk làm tiếp :

\(A=\frac{4}{6}\cdot\frac{10}{12}\cdot\frac{18}{20}....\cdot\frac{4026040}{4026042}\)

\(A=\frac{1\cdot4}{2\cdot3}\cdot\frac{2\cdot5}{3\cdot4}\cdot\frac{3\cdot6}{4\cdot5}\cdot...\cdot\frac{2005\cdot2008}{2006\cdot2007}\)

\(A=\frac{1\cdot2\cdot3\cdot...\cdot2005}{2\cdot3\cdot4\cdot...\cdot2006}\cdot\frac{4\cdot5\cdot6\cdot...\cdot2008}{3\cdot4\cdot5\cdot...\cdot2007}\)

\(A=\frac{1}{2006}\cdot\frac{2008}{3}=\frac{1004}{3009}\)

P/S : Hoq chắc :>

...
Đọc tiếp

\(\left(\frac{-5}{12}+\frac{7}{4}-\frac{3}{8}\right)-\left[4\frac{1}{2}-7\frac{1}{3}\right]-\left(\frac{1}{4}-\frac{5}{2}\right)\)

\(\left[2\frac{1}{4}-5\frac{3}{2}\right]-\left(\frac{3}{10}-1\right)-5\frac{1}{2}+\left(\frac{1}{3}-\frac{5}{6}\right)\)

\(\frac{4}{7}-\left(3\frac{2}{5}-1\frac{1}{2}\right)-\frac{5}{21}+\left[3\frac{1}{2}-4\frac{2}{3}\right]\)

\(\frac{1}{8}-1\frac{3}{4}+\left(\frac{7}{8}-3\frac{7}{2}+\frac{3}{4}\right)-\left[\frac{7}{4}-\frac{5}{8}\right]\)

\(\left(\frac{3}{5}-2\frac{1}{10}+\frac{11}{20}\right)-\left[\frac{-3}{4}+1\frac{7}{2}\right]\)

\(\left[-2\frac{1}{5}-2\frac{2}{3}\right]-\left(\frac{1}{15}-5\frac{1}{2}\right)+\left[\frac{-1}{6}+\frac{1}{3}\right]\)

\(1\frac{1}{8}-\left(\frac{1}{15}-\frac{1}{2}+\frac{-1}{6}\right)+\left[\frac{5}{4}+\frac{3}{2}\right]\)

\(\frac{5}{6}-\left(1\frac{1}{3}-1\frac{1}{2}\right)+\left[\frac{5}{12}-\frac{3}{4}-\frac{1}{6}\right]\)

\(1\frac{1}{4}-\left(\frac{7}{12}-\frac{2}{3}-1\frac{3}{8}\right)+\left[\frac{5}{24}-2\frac{1}{2}\right]-\frac{1}{6}-\left[\frac{-3}{4}\right]\)

\(-2\frac{1}{5}+2\frac{3}{10}-\left(\frac{6}{20}-\left[\frac{2}{8}-1\frac{1}{2}\right]\right)+\left[\frac{7}{20}-1\frac{1}{4}\right]\)

\(-\left[1\frac{2}{3}-3\frac{1}{2}+\frac{1}{4}\right]+\left(\frac{2}{6}-\frac{5}{12}\right)-\left(\frac{1}{3}-\left[\frac{1}{4}-\frac{1}{3}\right]\right)\)

\(-\frac{4}{5}-\left(1\frac{1}{10}-\frac{7}{10}\right)+\left[\frac{3}{4}-1\frac{1}{5}\right]+1\frac{1}{2}\)

\(\frac{3}{21}-\frac{5}{14}+\left[1\frac{1}{3}-5\frac{1}{2}+\frac{5}{14}\right]-\left(\frac{1}{6}-\frac{3}{7}+\frac{1}{3}\right)\)

\(-1\frac{2}{5}+\left[1\frac{3}{10}-\frac{7}{20}-1\frac{1}{4}\right]-\left(\frac{1}{5}-\left[\frac{3}{4}-1\frac{1}{2}\right]\right)\)

\(2\frac{1}{3}-\left(\frac{1}{2}-2\frac{1}{6}+\frac{3}{4}\right)+\left[\frac{5}{12}-1\frac{1}{3}\right]-\frac{7}{8}+3\frac{1}{2}\)

\(2\frac{1}{4}-1\frac{3}{5}-\left(\frac{9}{20}-\frac{7}{10}\right)+\left[1\frac{3}{5}-2\frac{1}{2}\right]+\frac{3}{4}\)

\(\left[\frac{8}{3}-5\frac{1}{4}+\frac{1}{6}\right]-\frac{7}{4}+\frac{-5}{12}-\left(1-1\frac{1}{2}+\frac{1}{3}\right)\)

\(\left(\frac{1}{4}-\left[1\frac{1}{4}-\frac{7}{10}\right]+\frac{1}{2}\right)-2\frac{1}{5}-1\frac{3}{10}+\left[1-\frac{1}{2}\right]\)

TRÌNH BÀY GIÚP MÌNH NHA 

0
17 tháng 6 2017

Ta thấy: \(1-\frac{1}{1+2+3+...+n}=1-\frac{2}{n\left(n+1\right)}=\frac{n^2+n-2}{n\left(n+1\right)}=\frac{\left(n-1\right)\left(n+2\right)}{n\left(n+1\right)}\)

\(\Rightarrow A=\left(1-\frac{1}{1+2}\right)\left(1-\frac{1}{1+2+3}\right)\left(1-\frac{1}{1+2+3+4}\right)...\left(1-\frac{1}{1+2+3+...+2006}\right)\)

\(=\left(\frac{\left(2-1\right)\left(2+2\right)}{2\left(2+1\right)}\right)\left(\frac{\left(3-1\right)\left(3+2\right)}{3\left(3+1\right)}\right)\left(\frac{\left(4-1\right)\left(4+2\right)}{4\left(4+1\right)}\right)...\left(\frac{\left(2006-1\right)\left(2006+2\right)}{2006\left(2006+1\right)}\right)\)

\(=\frac{1.4}{2.3}.\frac{2.5}{3.4}.\frac{3.6}{4.5}...\frac{2005.2008}{2006.2007}=\frac{\left(1.2.3...2005\right)\left(4.5.6...2008\right)}{\left(2.3.4...2006\right)\left(3.4.5...2007\right)}\)

\(=\frac{1.2008}{2006.3}=\frac{1004}{1003.3}=\frac{1004}{3009}\)

Vậy \(A=\frac{1004}{3009}\)