Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,\frac{1}{2}+\frac{2}{3}x=\frac{4}{5}\)
=> \(\frac{2}{3}x=\frac{4}{5}-\frac{1}{2}=\frac{3}{10}\)
=> \(x=\frac{3}{10}:\frac{2}{3}=\frac{9}{20}\)
Vậy \(x\in\left\{\frac{9}{20}\right\}\)
\(b,x+\frac{1}{4}=\frac{4}{3}\)
=> \(x=\frac{4}{3}-\frac{1}{4}=\frac{13}{12}\)
Vậy \(x\in\left\{\frac{13}{12}\right\}\)
\(c,\frac{3}{5}x-\frac{1}{2}=-\frac{1}{7}\)
=> \(\frac{3}{5}x=-\frac{1}{7}+\frac{1}{2}=\frac{5}{14}\)
=> \(x=\frac{5}{14}:\frac{3}{5}=\frac{25}{42}\)
Vậy \(x\in\left\{\frac{25}{42}\right\}\)
\(d,\left|x+5\right|-6=9\)
=> \(\left|x+5\right|=9+6=15\)
=> \(\left[{}\begin{matrix}x+5=15\\x+5=-15\end{matrix}\right.\)
=> \(\left[{}\begin{matrix}x=15-5=10\\x=-15-5=-20\end{matrix}\right.\)
Vậy \(x\in\left\{10;-20\right\}\)
\(e,\left|x-\frac{4}{5}\right|=\frac{3}{4}\)
=> \(\left[{}\begin{matrix}x-\frac{4}{5}=\frac{3}{4}\\x-\frac{4}{5}=-\frac{3}{4}\end{matrix}\right.\)
=> \(\left[{}\begin{matrix}x=\frac{3}{4}+\frac{4}{5}=\frac{31}{20}\\x=-\frac{3}{4}+\frac{4}{5}=\frac{1}{20}\end{matrix}\right.\)
Vậy \(x\in\left\{\frac{31}{20};\frac{1}{20}\right\}\)
\(f,\frac{1}{2}-\left|x\right|=\frac{1}{3}\)
=> \(\left|x\right|=\frac{1}{2}-\frac{1}{3}\)
=> \(\left|x\right|=\frac{1}{6}\)
=> \(\left[{}\begin{matrix}x=\frac{1}{6}\\x=-\frac{1}{6}\end{matrix}\right.\)
Vậy \(x\in\left\{\frac{1}{6};-\frac{1}{6}\right\}\)
\(g,x^2=16\)
=> \(\left|x\right|=\sqrt{16}=4\)
=> \(\left[{}\begin{matrix}x=4\\x=-4\end{matrix}\right.\)
vậy \(x\in\left\{4;-4\right\}\)
\(h,\left(x-\frac{1}{2}\right)^3=\frac{1}{27}\)
=> \(x-\frac{1}{2}=\sqrt[3]{\frac{1}{27}}=\frac{1}{3}\)
=> \(x=\frac{1}{3}+\frac{1}{2}=\frac{5}{6}\)
Vậy \(x\in\left\{\frac{5}{6}\right\}\)
\(i,3^3.x=3^6\)
\(x=3^6:3^3=3^3=27\)
Vậy \(x\in\left\{27\right\}\)
\(J,\frac{1,35}{0,2}=\frac{1,25}{x}\)
=> \(x=\frac{1,25.0,2}{1,35}=\frac{5}{27}\)
Vậy \(x\in\left\{\frac{5}{27}\right\}\)
\(k,1\frac{2}{3}:x=6:0,3\)
=> \(\frac{5}{3}:x=20\)
=> \(x=\frac{5}{3}:20=\frac{1}{12}\)
Vậy \(x\in\left\{\frac{1}{12}\right\}\)
a)\(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+...+\frac{1}{110}\)
= \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+..+\frac{1}{10.11}\)
= \(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{10}-\frac{1}{11}\)
= \(1-\frac{1}{11}\)
= \(\frac{10}{11}\)
b) Đặt A = \(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+...+\frac{1}{128}\)
= \(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^7}\)
=> 2A = \(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^6}\)
Lấy 2A - A = \(\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^6}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^7}\right)\)
A = \(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^6}-\frac{1}{2}-\frac{1}{2^2}-\frac{1}{2^3}-...-\frac{1}{2^7}\)
A = \(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{2^2}+\frac{1}{2^2}-...-\frac{1}{2^6}+\frac{1}{2^6}-\frac{1}{2^7}\)
A =\(1-\frac{1}{2^7}\)
Đặt \(A=\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+...+\frac{1}{90}+\frac{1}{110}\)
\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{9.10}+\frac{1}{10.11}\)
\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{9}-\frac{1}{10}+\frac{1}{10}-\frac{1}{11}\)
\(A=1-\frac{1}{11}\)
\(A=\frac{10}{11}\)
Đặt \(B=\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}+\frac{1}{128}\)
\(B=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}+\frac{1}{2^5}+\frac{1}{2^6}+\frac{1}{2^7}\left(1\right)\)
\(2B=\frac{2}{2}+\frac{2}{2^2}+\frac{2}{2^3}+\frac{2}{2^4}+\frac{2}{2^5}+\frac{2}{2^6}+\frac{2}{2^7}\)
\(2B=1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}+\frac{1}{2^5}+\frac{1}{2^6}\left(2\right)\)
Lấy \(\left(2\right)-\left(1\right)\)hay \(2B-B\)ta có:
\(2B-B=\left(1+\frac{1}{2}+...+\frac{1}{2^6}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^7}\right)\)
\(\Rightarrow B=1-\frac{1}{2^7}\)
\(\Rightarrow B=\frac{2^7-1}{2^7}=\frac{128-1}{128}=\frac{127}{128}\)
HOK TOT
a,\(\frac{1}{x-1}+\frac{-2}{3}.\left(\frac{3}{4}-\frac{6}{5}\right)=\frac{5}{2-2x}\)
\(\Rightarrow\frac{1}{x-1}+\frac{-2}{3}.\left(\frac{3}{4}-\frac{6}{5}\right)=\frac{5}{2-2x};Đkxđ:x\ne1\)
\(\Rightarrow\frac{1}{x-1}+\frac{-2}{3}\left(\frac{-9}{20}\right)=\frac{5}{2-2x}\)
\(\Rightarrow\frac{1}{x-1}+\frac{3}{10}=\frac{5}{2-2x}\)
\(\Rightarrow\frac{1}{x-1}-\frac{5}{2-2x}=\frac{-3}{10}\)
\(\Rightarrow\frac{1}{x-1}-\frac{5}{-2\left(x-1\right)}=\frac{-3}{10}\)
\(\Rightarrow\frac{1}{x-1}+\frac{5}{2\left(x-1\right)}=\frac{3}{10}\)
\(\Rightarrow\frac{7}{2\left(x-1\right)}=\frac{-3}{10}\)
\(\Rightarrow70=-6\left(x-1\right)\)
\(\Rightarrow6x=6-70\)
\(\Rightarrow6x=-64\)
\(\Rightarrow x=\frac{-32}{3}x\ne1\)
a) \(\left(-\frac{3}{4}+\frac{2}{5}\right):\frac{3}{7}+\left(\frac{3}{5}+\frac{-9}{4}\right):\frac{3}{7}\)
= \(\left(-\frac{3}{4}+\frac{2}{5}\right)\cdot\frac{7}{3}+\left(\frac{3}{5}+\frac{-9}{4}\right)\cdot\frac{7}{3}\)
= \(\left(-\frac{15}{20}+\frac{8}{20}\right)\cdot\frac{7}{3}+\left(\frac{12}{20}-\frac{45}{20}\right)\cdot\frac{7}{3}\)
= \(-\frac{7}{20}\cdot\frac{7}{3}-\frac{33}{20}\cdot\frac{7}{3}\)
=\(\frac{7}{3}\cdot\left(-\frac{7}{20}-\frac{33}{20}\right)\)
=\(\frac{7}{3}\cdot\left(-2\right)\)
=\(-\frac{14}{3}\)
Sửa lại cái dòng này một tí:
\(=\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{99.200}-\frac{1}{200.201}\)
Còn lại đúng hết! Không cần lo
a) Đặt \(A=\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{199.200.201}\). Ta xét:
\(\frac{1}{1.2}-\frac{1}{2.3}=\frac{1}{1.2.3}\); \(\frac{1}{2.3}-\frac{1}{3.4}=\frac{1}{2.3.4}\); \(\frac{1}{3.4}-\frac{1}{4.5}=\frac{1}{3.4.5}\);.......;\(\frac{1}{99.200}-\frac{1}{200.201}=\frac{1}{99.100.101}\)
Qua công thức trên ta rút ra tổng quát ( nói thêm cho dễ hiểu)
\(\frac{1}{n\left(n+1\right)}-\frac{1}{\left(n+1\right)\left(n+2\right)}=\frac{2}{n\left(n+1\right)\left(n+2\right)}\)
\(\Rightarrow2A=\frac{2}{1.2.3}+\frac{2}{2.3.4}+\frac{2}{3.4.5}+....+\frac{2}{199.200.201}\)
\(=\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+....+\frac{1}{199.200.201}\)
Ta thấy: \(-\frac{1}{2.3}+\frac{1}{2.3}=0\);\(-\frac{1}{3.4}+\frac{1}{3.4}=0\); . . . . .
\(\Rightarrow2A=\frac{1}{2}-\frac{1}{200.201}=\frac{1}{2}-\frac{1}{40200}\)
\(\Rightarrow A=\frac{\frac{1}{2}-\frac{1}{40200}}{2}\)
a) Ta có\(\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+...+\frac{2}{110}=\frac{2}{2.3}+\frac{2}{3.4}+\frac{2}{4.5}+...+\frac{2}{10.11}\)
\(=2\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{10.11}\right)=2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{10}-\frac{1}{11}\right)\)
\(=2\left(\frac{1}{2}-\frac{1}{11}\right)=1-\frac{2}{11}=\frac{9}{11}\)
b) Ta có \(1-\frac{1}{2}-\frac{1}{4}-\frac{1}{8}-...-\frac{1}{2048}=1-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+...+\frac{1}{2048}\right)\)(1)
Đặt S = \(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+...+\frac{1}{1024}+\frac{1}{2048}\)
=> \(2S=1+\frac{1}{2}+\frac{1}{4}+...+\frac{1}{1024}\)
Lấy 2S trừ S ta có :
2S - S \(=\left(1+\frac{1}{2}+\frac{1}{4}+...+\frac{1}{1024}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+...+\frac{1}{1024}+\frac{1}{2048}\right)\)
\(S=1-\frac{1}{2048}\)
Khi đó (1) <=> \(1-\left(1-\frac{1}{2048}\right)=1-1+\frac{1}{2048}=\frac{1}{2048}\)
\(a,\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+\frac{2}{30}+....+\frac{2}{90}+\frac{2}{110}\)
\(=2.\left(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+.....+\frac{1}{90}+\frac{1}{110}\right)\)
\(=2.\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+....+\frac{1}{9.10}+\frac{1}{10.11}\right)\)
\(=2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-....+\frac{1}{9}-\frac{1}{10}+\frac{1}{10}-\frac{1}{11}\right)\)
\(=2\left(\frac{1}{2}-\frac{1}{11}\right)\)
\(=1-\frac{2}{11}\)
\(=\frac{9}{11}\)