Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(A=\frac{2}{1\cdot2\cdot3}+\frac{2}{2\cdot3\cdot4}+...+\frac{2}{98\cdot99\cdot100}\)
\(A=\frac{1}{1\cdot2}-\frac{1}{2\cdot3}+\frac{1}{2\cdot3}-\frac{1}{3\cdot4}+...+\frac{1}{98\cdot99}-\frac{1}{99\cdot100}\)
\(A=\frac{1}{2}-\frac{1}{99\cdot100}=\frac{1}{2}-\frac{1}{9900}=\frac{4949}{9900}\)
b) \(B=\frac{17}{1\cdot3\cdot5}+\frac{17}{3\cdot5\cdot7}+\frac{17}{5\cdot7\cdot9}+...+\frac{17}{47\cdot49\cdot51}\)
\(B=\frac{17}{4}\left(\frac{4}{1\cdot3\cdot5}+\frac{4}{3\cdot5\cdot7}+\frac{4}{5\cdot7\cdot9}+...+\frac{4}{47\cdot49\cdot51}\right)\)
\(B=\frac{17}{4}\left(\frac{1}{1\cdot3}-\frac{1}{3\cdot5}+\frac{1}{3\cdot5}-\frac{1}{5\cdot7}+...+\frac{1}{47\cdot49}-\frac{1}{49\cdot51}\right)\)
\(B=\frac{17}{4}\left(\frac{1}{3}-\frac{1}{2499}\right)=\frac{17}{4}\cdot\frac{832}{2499}=\frac{208}{147}\)
Bài làm:
Ta có: \(A=\frac{1}{1.3.5}+\frac{1}{3.5.7}+...+\frac{1}{47.49.51}\)
\(A=\frac{1}{4}\left(\frac{4}{1.3.5}+\frac{4}{3.5.7}+...+\frac{4}{47.49.51}\right)\)
\(A=\frac{1}{4}\left(\frac{1}{1.3}-\frac{1}{3.5}+\frac{1}{3.5}-\frac{1}{5.7}+...+\frac{1}{47.49}-\frac{1}{49.51}\right)\)
\(A=\frac{1}{4}\left(\frac{1}{3}-\frac{1}{49.51}\right)\)
\(A=\frac{1}{12}-\frac{1}{4.49.51}< \frac{1}{12}\)
Vậy \(A< \frac{1}{12}\)
Từ đề bài suy ra\(4A=\frac{4}{1.3.5}+\frac{4}{3.5.7}+...+\frac{4}{47.49.51}\)
\(=\frac{1}{1.3}-\frac{1}{3.5}+\frac{1}{3.5}-\frac{1}{5.7}+...+\frac{1}{47.49}-\frac{1}{49.51}=\frac{1}{3}-\frac{1}{49.51}< \frac{1}{3}\)
\(\Rightarrow A< \frac{1}{12}\left(đpcm\right)\)
a) \(\frac{17}{30}>\frac{51}{92}\)
b) \(\frac{-45}{47}>\frac{31}{-30}\)
c) \(\frac{22}{67}< \frac{51}{152}\)
d) \(-\frac{17}{39}< -\frac{17}{41};\frac{18}{-39}< -\frac{17}{41}\)
- \(\frac{11}{125}-\frac{17}{18}-\frac{5}{7}+\frac{4}{9}+\frac{17}{14}\)
\(=\left(-\frac{17}{18}+\frac{4}{9}\right)+\left(-\frac{5}{7}+\frac{17}{14}\right)+\frac{11}{125}\)
\(=-1+\frac{1}{2}+\frac{11}{125}\)
\(=-1+\frac{147}{125}\)
\(=\frac{22}{125}\)
2. \(1-\frac{1}{2}+2-\frac{2}{3}+3-\frac{3}{4}+4-\frac{1}{4}-3-\frac{1}{3}-2-\frac{1}{2}-1\)
\(=\left(1+2+3+4-3-2-1\right)\)\(+\left(-\frac{1}{2}-\frac{1}{2}\right)+\left(-\frac{2}{3}-\frac{1}{3}\right)+\left(-\frac{3}{4}-\frac{1}{4}\right)\)
\(=4-1-1-1\)
\(=1\)
\(6.\left(-\frac{1}{3}\right)^2-\frac{5}{4}:0,5+3\frac{1}{2}\)
\(=6.\frac{1}{9}-\frac{5}{4}.2+\frac{7}{2}\)
\(=\frac{2}{3}-\frac{5}{2}+\frac{7}{2}\)
\(=-\frac{11}{6}+\frac{7}{2}\)
\(=\frac{5}{3}\)
\(\frac{2017}{2018}.\frac{15}{17}-\frac{32}{17}.\frac{2017}{2018}=\frac{2017}{2018}.\left(\frac{15}{17}-\frac{32}{17}\right)\)
\(=\frac{2017}{2108}.\left(-1\right)=-\frac{2017}{2018}\)
a.|x-1/2|,|y+3/2|,|7-5/2| đều lớn hơn hoặc bằng 0
=>không tìm thấy x,y
b
a)\(\dfrac{11}{125}-\dfrac{17}{18}-\dfrac{5}{7}+\dfrac{4}{9}+\dfrac{17}{14}\)
\(=\dfrac{11}{125}-\left(\dfrac{17}{18}-\dfrac{4}{9}\right)-\left(\dfrac{5}{7}-\dfrac{17}{14}\right)\)
\(=\dfrac{11}{125}-\dfrac{5}{18}-\dfrac{-7}{14}=\dfrac{11}{125}-\dfrac{5}{18}+\dfrac{1}{2}\)
\(=\dfrac{11}{125}-\left(\dfrac{5}{18}-\dfrac{1}{2}\right)=\dfrac{11}{125}-\dfrac{-4}{18}=\dfrac{11}{125}+\dfrac{2}{9}\)
\(=\frac{1}{4}.\left(\frac{17.4}{1.3.5}+\frac{17.4}{3.5.7}+\frac{17.4}{5.7.9}+...+\frac{17.4}{47.49.51}\right)\)
\(=\frac{17}{4}\left(\frac{1}{1.3}-\frac{1}{3.5}+\frac{1}{3.5}-\frac{1}{5.7}+...+\frac{1}{47.49}-\frac{1}{49.51}\right)\)
\(=\frac{17}{4}\left(\frac{1}{3}-\frac{1}{2499}\right)=\frac{17}{4}.\frac{832}{2499}=\frac{208}{147}\)