K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 12 2015

Ta co : 

\(A=3-3^2+3^3-3^4+...+3^{99}-3^{100}\)

\(3A=\left(-1\right)+3^2-3^3+3^4-3^5+...+3^{100}-3^{101}\)

\(4A=\left(-1\right)+3A+A=3-3^{101}\)

\(\Rightarrow A=\left(-1\right)\frac{3-3^{101}}{4}\)

**** NHE

3 tháng 3 2021

3850000

23 tháng 10 2016

Bài 1:

A = 1 + 3 + 32 + ... + 3100

=> 3A = 3 + 32 + ... + 3101

=> 2A = 3101 - 1

=> A = \(\frac{3^{101}-1}{2}\)

B = 1 + 42 + 44 + ... + 4100

=> 8B = 42 + 44 + ... + 4102

=> 7B = 4102 - 1

=> B = \(\frac{4^{102}-1}{7}\)

Bài 2:

a) S1 = 22 + 42 + ... + 202

=> S1 = 22(1+22+...+102)

=> S1 = 22.385

=> S1 = 1540

b) S2 = 1002 + 2002 + ... + 10002

=> S2 = 1002(1+22+...+102)

=> S2 = 1002.385

=> S2 = 3850000

 

5 tháng 3 2017

B = 1 bạn nhé , đúng 100000000000% luôn

Bài 3:

a: a*S=a^2+a^3+...+a^2023

=>(a-1)*S=a^2023-a

=>\(S=\dfrac{a^{2023}-a}{a-1}\)

b: a*B=a^2-a^3+...-a^2023

=>(a+1)B=a-a^2023

=>\(B=\dfrac{a-a^{2023}}{a+1}\)

6 tháng 9 2019

\(A=1+3+3^2+...+3^{100}\)

\(\Rightarrow3A=3+3^2+3^3+...+3^{101}\)

\(\Rightarrow3A-A=3^{101}-1\)

\(\Rightarrow A=\frac{3^{101}-1}{2}\)