K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 4 2019

A=1/1*3+1/3*5+...+1/2017*2019

2A=2/1*3+2/3*5+...+2/2017*2019

2A=1-1/3+1/3-1/5+..+1/2017-1/2019

2A=1-1/2019

2A=2018/2019

A=(2018/2019):2

A=1009/2019

16 tháng 4 2019

A=1009/2019

5 tháng 4 2018

Ta có: \(N=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{2005.2006}\)

\(\Rightarrow N=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{2005}-\frac{1}{2006}\)

          \(=1-\frac{1}{2006}=\frac{2005}{2006}\)

 \(M=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+....+\frac{2}{2015.2017}\)

      \(\Rightarrow1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+....+\frac{1}{2015}-\frac{1}{2017}\)

        \(=1-\frac{1}{2017}=\frac{2016}{2017}\)

5 tháng 4 2018

N = 1/1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 +...+ 1/2005 - 1/2006

   = 1/1 - 1/2006

   = 2006/2006 - 1/2006

   =  2005/2006

1 tháng 6 2020

\(2.S=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{2017.2019}\)

\(=\frac{3-1}{1.3}+\frac{5-3}{3.5}+\frac{7-5}{5.7}+...+\frac{2019-2017}{2017.2019}\)

\(=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{2017}-\frac{1}{2019}\)

\(=1-\frac{1}{2019}=\frac{2018}{2019}\)

=> \(S=\frac{1009}{2019}\)

Tính: S= 1/1.3 + 1/3.5 +1/5.7 + 1009/2019 .....+ 1/2017.2019

Trả lời:

1009/2019

Cố gắng lên (tự nhủ) 

\(S=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{2017.2019}\)

\(2S=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{2017}-\frac{1}{2019}\)

\(2S=1-\frac{1}{2019}=\frac{2018}{2019}\)

\(S=\frac{1009}{2019}\)

19 tháng 4 2023

Hi

22 tháng 3 2017

\(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{2017.2019}\)

\(=1-\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+..+\frac{1}{2017}-\frac{1}{2019}\div2\)

\(=\left(1-\frac{1}{2019}\right)\div2\)

\(=\frac{2018}{2019}\div2\)

\(=\frac{1009}{2019}\)

22 tháng 3 2017

Đặt \(A=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{2017.2019}\)

\(2A=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{2017.2019}\)

\(2A=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{2017}-\frac{1}{2019}\)

\(2A=1-\frac{1}{2017}\)

\(2A=\frac{2016}{2017}\)

\(A=\frac{2016}{2017}:2\)

\(A=\frac{1008}{2017}\)

=1/2(2/1*3+2/3*5+...+2/2017*2019)

=1/2(1-1/3+1/3-1/5+...+1/2017-1/2019)

=1/2*2018/2019

=1009/2019

11 tháng 4 2023

=1/2(2/1x3+2/3x5+...+2/2017x2019)

=1/2(1-1/3+1/3-1/5+...+1/2017-1/2019)

=1/2x2018/2019

=1008/2019

10 tháng 7 2018

a, \(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{2017.2018}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2017}-\frac{1}{2018}\)

\(=1-\frac{1}{2018}=\frac{2017}{2018}\)

b, \(\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{2003.2005}\)

\(=\frac{1}{2}\cdot\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{2003}-\frac{1}{2005}\right)\)

\(=\frac{1}{2}\cdot\left(1-\frac{1}{2005}\right)\)

\(=\frac{1}{2}\cdot\frac{2004}{2005}=\frac{1002}{2005}\)

10 tháng 7 2018

\(\frac{1}{1.2}=\frac{1}{1}-\frac{1}{2}\) Từ đó áp dụng tính câu a

\(\frac{2}{1.3}=\frac{1}{1}-\frac{1}{3}\) Áp dụng tính câu b

30 tháng 9 2015

Mau trả điểm cho nick phụ của tui,trả điểm đây mau lên