Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
P \(=\left(1-\frac{1}{2^2}\right).\left(1-\frac{1}{3^2}\right).\left(1-\frac{1}{4^2}\right)...\left(1-\frac{1}{50^2}\right)\)
P\(=\frac{2^2-1}{2^2}.\frac{3^2-1}{3^2}.\frac{4^2-1}{4^2}...\frac{50^2-1}{50^2}\)
P \(=\frac{1.3}{2.2}.\frac{2.4}{3.3}.\frac{3.5}{4.4}...\frac{49.51}{50.50}\)
P\(=\frac{\left(1.2.3...49\right).\left(3.4.5...51\right)}{\left(2.3.4...50\right).\left(2.3.4...50\right)}\)
P\(=\frac{1.51}{50.2}=\frac{51}{100}\)
Ta có : \(A=\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\left(1-\frac{1}{4}\right).......\left(1-\frac{1}{2017}\right)\)
\(=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}......\frac{2016}{2017}\)
\(=\frac{1.2.3......2016}{2.3.4.......2017}\)
\(=\frac{1}{2017}\)
a) \(\left(3x-\frac{1}{2}\right)^2=\frac{1}{121}=\left(\frac{1}{11}\right)^2\)
=> \(\orbr{\begin{cases}3x-\frac{1}{2}=\frac{1}{11}\\3x-\frac{1}{2}=-\frac{1}{11}\end{cases}}\)
=> \(\orbr{\begin{cases}3x=\frac{13}{22}\\3x=\frac{9}{22}\end{cases}}\)
=> \(\orbr{\begin{cases}x=\frac{13}{66}\\x=\frac{3}{22}\end{cases}}\)
b) \(\left(5-3x\right)^3=\left(-\frac{1}{27}\right)=\left(-\frac{1}{3}\right)^3\)
=> \(5-3x=-\frac{1}{3}\)
=> \(3x=\frac{16}{3}\)
=> \(x=\frac{16}{3}:3=\frac{16}{9}\)
c) 5x + 5x+2 = 650
=> 5x + 5x . 52 = 650
=> 5x(1 + 52) = 650
=> 5x . 26 = 650
=> 5x = 25
=> 5x = 52 => x = 2
d) 3x-1 + 5.3x-1 = 126
=> (1 + 5).3x-1 = 126
=> 6.3x-1 = 126
=> 3x-1 = 21
=> 3x-1 =3.7
tới đây là không xử lí được x luôn :)
a,\(\left(3x-\frac{1}{2}\right)^2=\frac{1}{121}=\left(\frac{1}{11}\right)^2=\left(-\frac{1}{11}\right)^2\)
\(< =>\orbr{\begin{cases}3x-\frac{1}{2}=\frac{1}{11}\\3x-\frac{1}{2}=-\frac{1}{11}\end{cases}}< =>\orbr{\begin{cases}3x=\frac{1}{11}+\frac{1}{2}\\3x=-\frac{1}{11}+\frac{1}{2}\end{cases}}\)
\(< =>\orbr{\begin{cases}3x=\frac{2}{22}+\frac{11}{22}=\frac{13}{22}\\3x=\frac{11}{22}-\frac{2}{22}=\frac{9}{22}\end{cases}}\)
\(< =>\orbr{\begin{cases}x=\frac{13}{22}:3=\frac{13}{22}.\frac{1}{3}=\frac{13}{66}\\x=\frac{9}{22}:3=\frac{9}{22}.\frac{1}{3}=\frac{9}{66}=\frac{3}{22}\end{cases}}\)
b,\(\left(5-3x\right)^2=-\frac{1}{27}=\left(-\frac{1}{3}\right)^3\)
\(< =>5-3x=-\frac{1}{3}< =>-3x=-\frac{1}{3}-5=-\frac{16}{3}\)
\(< =>3x=\frac{16}{3}< =>x=\frac{16}{3}:3=\frac{16}{3}.\frac{1}{3}=\frac{16}{9}\)
c,\(5^x+5^{x+2}=650< =>5^x+5^x.25=650\)
\(< =>5^x\left(25+1\right)=5^x=\frac{650}{36}=25< =>x=2\)
bạn nào giúp câu d
\(x-40\%x=3,6\)
\(\Rightarrow100\%x-40\%x=3,6\)
\(\Rightarrow60\%x=3,6\)
\(\Rightarrow\frac{60}{100}x=3,6\)
\(\Rightarrow x=6\)
\(3\frac{2}{7}x-\frac{1}{3}=-2\frac{3}{4}\)
\(\Rightarrow\frac{23}{7}x-\frac{1}{3}=-\frac{11}{4}\)
\(\Rightarrow\frac{23}{7}x=-\frac{33}{12}+\frac{4}{12}\)
\(\Rightarrow\frac{23}{7}x=\frac{29}{12}\)
\(\Rightarrow x=\frac{29}{12}:\frac{23}{7}=\frac{203}{276}\)
Tìm x :
a) \(2.x.\frac{-3}{4}=-\frac{5}{12}\)
\(\Rightarrow2x=-\frac{5}{12}:-\frac{3}{4}\)
\(\Rightarrow2x=\frac{5}{9}\)
\(\Rightarrow x=\frac{5}{9}:2\)
\(\Rightarrow x=\frac{5}{18}\)
Vậy : \(x=\frac{5}{18}\)
b) \(\frac{2}{3}+\frac{1}{3}.x=7\)
\(\Rightarrow\frac{1}{3}.x=7-\frac{2}{3}\)
\(\Rightarrow\frac{1}{3}.x=\frac{19}{3}\)
\(\Rightarrow x=\frac{19}{3}:\frac{1}{3}\)
\(\Rightarrow x=19\)
Vậy : \(x=19\)
c) \(\left(4.x+\frac{1}{8}\right)=\frac{3}{10}\)
\(\Rightarrow4.x=\frac{3}{10}-\frac{1}{8}\)
\(\Rightarrow4.x=\frac{7}{40}\)
\(\Rightarrow x=\frac{7}{40}:4\)
\(\Rightarrow x=\frac{7}{160}\)
Vậy : \(x=\frac{7}{160}\)
d) \(\frac{1}{3}.x-5=1\frac{1}{2}\)
\(\Rightarrow\frac{1}{3}.x-5=\frac{3}{2}\)
\(\Rightarrow\frac{1}{3}.x=\frac{3}{2}+5\)
\(\Rightarrow\frac{1}{3}.x=\frac{13}{2}\)
\(\Rightarrow x=\frac{13}{2}:\frac{1}{3}\)
\(\Rightarrow x=\frac{39}{2}\)
Vậy : \(x=\frac{39}{2}\)
e) \(-\frac{2}{3}.x+\frac{1}{3}=-\frac{1}{2}\)
\(\Rightarrow-\frac{2}{3}.x=-\frac{1}{2}-\frac{1}{3}\)
\(\Rightarrow-\frac{2}{3}.x=-\frac{5}{6}\)
\(\Rightarrow x=-\frac{5}{6}:\left(-\frac{2}{3}\right)\)
\(\Rightarrow x=\frac{5}{4}\)
Vậy : \(x=\frac{5}{4}\)
A = \(\frac{3}{2^2}\times\frac{8}{3^2}\times\frac{15}{4^2}\times...\times\frac{9999}{100^2}\) = \(\frac{3\times8\times15\times...\times9999}{2^2\times3^2\times4^2\times...\times100^2}\)=\(\frac{(1\times3)\times(2\times4)\times(3\times5)\times...\times(99\times101)}{2^2\times3^2\times4^2\times...\times100^2}\)=\(\frac{(1\times2\times3\times...\times99)\times(3\times4\times5\times...\times101)}{(2\times3\times4\times...\times100)\times(2\times3\times4\times...\times100)}\)=\(\frac{101}{100\times2}\)=\(\frac{101}{200}\)