Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(2x-1^3+8\)
\(=2x-9\)
\(=\left(\sqrt{2x}\right)^2-3^2\)
\(=\left(\sqrt{2x}-3\right)\left(\sqrt{2x}+3\right)\)
_________
\(8x^3-12x^2+6x-1\)
\(=\left(2x\right)^3-3\cdot\left(2x\right)^2\cdot1+3\cdot2x\cdot1^2-1^3\)
\(=\left(2x-1\right)^3\)
_______________
\(8x^3-12x^2+6x-2\)
\(=8x^3-12x^2+6x-1-1\)
\(=\left(2x-1\right)^3-1\)
\(=\left(2x-1-1\right)\left(4x^2-4x+1+2x-1+1\right)\)
\(=\left(2x-2\right)\left(4x^2-2x+1\right)\)
\(=2\left(x-1\right)\left(4x^2-2x+1\right)\)
________
\(9x^3-12x^2+6x-1\)
\(=x^3+8x^3-12x^2+6x-1\)
\(=x^3+\left(2x-1\right)^3\)
\(=\left(x+2x-1\right)\left(x^2-2x^2-x+4x^2-4x+1\right)\)
\(=\left(3x-1\right)\left(3x^2-5x+1\right)\)
b: 8x^3-12x^2+6x-1
=(2x)^3-3*(2x)^2*1+3*2x*1^2-1^3
=(2x-1)^3
c: =(8x^3-12x^2+6x-1)-1
=(2x-1)^3-1
=(2x-1-1)[(2x-1)^2+2x-1+1]
=2(x-1)(4x^2-4x+1+2x)
=2(x-1)(4x^2-2x+1)
Ta có : \(x^2-2x-1=0
\)
\(\Leftrightarrow \)\((x-1)^2=2\)
\(\Leftrightarrow
\)\(\left[\begin{array}{}
x-1=\sqrt{2}\\
x-1=-\sqrt{2}
\end{array} \right.\)
Đặt P = \(\dfrac{x^6-6x^5+12x^4-8x^3+2015}{x^6-8x^3-12x^2+6x+2015}\)
=\(\dfrac{(x^6-2x^5-x^4)-(4x^5-8x^4-4x^3)+(5x^4-10x^3-5x^2)-(2x^3-4x^2-2x)+(x^2-2x-1)+2016}
{(x^6-2x^5-x^4)+(2x^5-4x^4-2x^3)+(5x^4-10x^3-5x^2)+(4x^3-8x^2-4x)+(x^2-2x-1)+12x+2016}\)
=\(\dfrac{x^4(x^2-2x-1)-4x^3(x^2-2x-1)+5x^2(x^2-2x-1)-2x(x^2-2x-1)+(x^2-2x-1)+2016}
{x^4(x^2-2x-1)+2x^3(x^2-2x-1)+5x^2(x^2-2x-1)+4x(x^2-2x-1)+(x^2-2x-1)+12x+2016}\)
=\(\dfrac{2016}{12x + 2016}\)
=\(\dfrac{2016}{12(x+1)+2004}\)
=\(\dfrac{168}{x+1+167}\)
=\(\left[\begin{array}{}
\dfrac{168}{\sqrt{2}+167}\\
\dfrac{168}{-\sqrt{2}+167}
\end{array} \right.\)
Chú thích: Hình như mẫu là \(-6x\) chứ không phải \(6x
\) bạn ạ. Hay là mình phân tích sai thì cho mình xin lỗi nhé.
a. \(3x\left(2x+1\right)=6x^2+3x\)
b. \(\left(12x^3-18x^2+6x\right):6x=2x^2-3x+1\)
c. \(\dfrac{7x+6}{5x-1}+\dfrac{8x-9}{5x-1}=\dfrac{15x-3}{5x-1}=\dfrac{3\left(5x-1\right)}{5x-1}=3\)
* \(2x\left(12x-5\right)-8x\left(3x-1\right)=30\Leftrightarrow24x^2-10x-24x^2+8x=30\) \(\Leftrightarrow-10x+8x=30\Leftrightarrow-2x=30\Leftrightarrow x=\dfrac{30}{-2}=-15\) vậy \(x=-15\)
* \(3x\left(3-2x\right)+6x\left(x-1\right)=15\Leftrightarrow9x-6x^2+6x^2-6x=15\)
\(\Leftrightarrow9x-6x=15\Leftrightarrow3x=15\Leftrightarrow x=\dfrac{15}{3}=5\) vậy \(x=5\)
\(a,2x\left(12x-5\right)-8x\left(3x-1\right)=30\)
\(\Leftrightarrow24x^2-10x-24x^2+8x=30\)
\(\Leftrightarrow-2x=30\)
\(\Leftrightarrow x=-15\)
\(b,3x\left(3-2x\right)+6x\left(x-1\right)=15\)
\(\Leftrightarrow9x-6x^2+6x^2-6x=15\)
\(\Leftrightarrow3x=15\)
\(\Leftrightarrow x=-5\)
a) \(2x\left(12x-5\right)-8x\left(3x-1\right)=30\)
\(\Leftrightarrow24x^2-10x-24x^2+8x=30\)
\(\Leftrightarrow-10x+8x=30\Leftrightarrow-2x=30\Leftrightarrow x=\dfrac{30}{-2}=-15\)
vậy \(x=-15\)
b) đề có sai o bn
1. \(A=\dfrac{4\left(2x-1\right)}{1^3-8x^3}\)=\(\dfrac{4\left(2x-1\right)}{-\left(2x-1\right)\left(4x^2+2x+1\right)}\) = \(\dfrac{4}{-4x^2-2x-1}\)
2. \(B=\dfrac{2x\left(x+3\right)}{x^3+3x^2+4x^2+12x}\)=\(\dfrac{2x\left(x+3\right)}{x^2\left(x+3\right)+4x\left(x+3\right)}\)=\(\dfrac{2x\left(x+3\right)}{\left(x^2+4x\right)\left(x+3\right)}\)=\(\dfrac{2x}{x^2+4x}=\dfrac{2x}{x\left(x+4\right)}=\dfrac{2}{x+4}\)
a) ĐKXĐ: \(x\notin\left\{\frac{1}{2};\frac{-1}{2}\right\}\)
Ta có: \(\frac{1+8x}{8x+4}=\frac{2x}{6x-3}-\frac{8x^2}{3-12x^2}\)
\(\Leftrightarrow\frac{8x+1}{4\left(2x+1\right)}=\frac{2x}{3\left(2x-1\right)}+\frac{8x^2}{3\left(4x^2-1\right)}\)
\(\Leftrightarrow\frac{3\left(8x+1\right)\left(2x-1\right)}{12\left(2x+1\right)\left(2x-1\right)}=\frac{2x\cdot4\cdot\left(2x+1\right)}{12\left(2x+1\right)\left(2x-1\right)}+\frac{32x^2}{12\left(2x-1\right)\left(2x+1\right)}\)
Suy ra: \(3\left(8x+1\right)\left(2x-1\right)=8x\left(2x+1\right)+32x^2\)
\(\Leftrightarrow3\left(16x^2-8x+2x-1\right)=16x^2+8x+32x^2\)
\(\Leftrightarrow3\left(16x^2-6x-1\right)=48x^2+8x\)
\(\Leftrightarrow48x^2-18x-3-48x^2-8x=0\)
\(\Leftrightarrow-26x-3=0\)
\(\Leftrightarrow-26x=3\)
hay \(x=-\frac{3}{26}\)
Vậy: \(S=\left\{-\frac{3}{26}\right\}\)
b) Ta có: \(\left(x-2\right)\left(x-3\right)< \left(x-4\right)^2-2\left(x+3\right)\)
\(\Leftrightarrow x^2-5x+6< x^2-8x+16-2x-6\)
\(\Leftrightarrow x^2-5x+6< x^2-10x+10\)
\(\Leftrightarrow x^2-5x+6-x^2+10x-10< 0\)
\(\Leftrightarrow5x-4< 0\)
\(\Leftrightarrow5x< 4\)
hay \(x< \frac{4}{5}\)
Vậy: S={x|\(x< \frac{4}{5}\)}
a) \(2x\left(12x-5\right)-8x\left(3x-1\right)=30\)
\(24x^2-10x-24x^2+8x=30\)
\(-2x=30\)
\(x=-15\)
vay \(x=-15\)
b) \(3x\left(3-2x\right)+6x\left(x-1\right)=15\)
\(9x-6x^2+6x^2-6x=15\)
\(3x=15\)
\(x=5\)