Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
22) \(\frac{1}{\sqrt{5}+\sqrt{2}}+\frac{1}{\sqrt{5}-\sqrt{2}}\)
\(=\frac{\left(\sqrt{5}-\sqrt{2}\right)+\left(\sqrt{5}+\sqrt{2}\right)}{\left(\sqrt{5}+\sqrt{2}\right)\left(\sqrt{5}-\sqrt{2}\right)}\)
\(=\frac{2\sqrt{5}}{\sqrt{5^2}-\sqrt{2^2}}\)
\(=\frac{2\sqrt{5}}{5-2}=\frac{2\sqrt{5}}{3}\)
a)
\(A=\sqrt{26+15\sqrt{3}}=\sqrt{\frac{52+30\sqrt{3}}{2}}=\sqrt{\frac{27+25+2\sqrt{27.25}}{2}}\)
\(=\sqrt{\frac{(\sqrt{27}+\sqrt{25})^2}{2}}=\frac{\sqrt{27}+\sqrt{25}}{\sqrt{2}}=\frac{3\sqrt{3}+5}{\sqrt{2}}=\frac{3\sqrt{6}+5\sqrt{2}}{2}\)
b)
\(B\sqrt{2}=\sqrt{8+2\sqrt{7}}-\sqrt{8-2\sqrt{7}}-2\)
\(=\sqrt{7+1+2\sqrt{7}}-\sqrt{7+1-2\sqrt{7}}-2\)
\(=\sqrt{(\sqrt{7}+1)^2}-\sqrt{(\sqrt{7}-1)^2}-2=\sqrt{7}+1-(\sqrt{7}-1)-2=0\)
\(\Rightarrow B=0\)
c)
\(C=\sqrt{8-2\sqrt{15}}-\sqrt{8+2\sqrt{15}}=\sqrt{3+5-2\sqrt{3.5}}-\sqrt{3+5+2\sqrt{3.5}}\)
\(=\sqrt{(\sqrt{5}-\sqrt{3})^2}-\sqrt{(\sqrt{5}+\sqrt{3})^2}=(\sqrt{5}-\sqrt{3})-(\sqrt{5}+\sqrt{3})=-2\sqrt{3}\)
d)
\(D=(\sqrt{6}-2)(5+2\sqrt{6})\sqrt{5-2\sqrt{6}}\)
\(=\sqrt{2}(\sqrt{3}-\sqrt{2})(2+3+2\sqrt{2.3})\sqrt{2+3-2\sqrt{2.3}}\)
\(=\sqrt{2}(\sqrt{3}-\sqrt{2})(\sqrt{3}+\sqrt{2})^2\sqrt{(\sqrt{3}-\sqrt{2})^2}\)
\(=\sqrt{2}(\sqrt{3}-\sqrt{2})^2(\sqrt{3}+\sqrt{2})^2=\sqrt{2}[(\sqrt{3}+\sqrt{2})(\sqrt{3}-\sqrt{2})]^2\)
\(=\sqrt{2}.1^2=\sqrt{2}\)
e)
\(E=(\sqrt{10}-\sqrt{2})\sqrt{3+\sqrt{5}}=(\sqrt{5}-1).\sqrt{2}.\sqrt{3+\sqrt{5}}\)
\(=(\sqrt{5}-1)\sqrt{6+2\sqrt{5}}=(\sqrt{5}-1)\sqrt{5+1+2\sqrt{5.1}}\)
\(=(\sqrt{5}-1)\sqrt{(\sqrt{5}+1)^2}=(\sqrt{5}-1)(\sqrt{5}+1)=4\)
f)
\(F=\sqrt{\sqrt{5}-\sqrt{3-\sqrt{29-12\sqrt{5}}}}=\sqrt{\sqrt{5}-\sqrt{3-\sqrt{20+9-2\sqrt{20.9}}}}\)
\(=\sqrt{\sqrt{5}-\sqrt{3-\sqrt{(\sqrt{20}-3)^2}}}=\sqrt{\sqrt{5}-\sqrt{3-(\sqrt{20}-3)}}\)
\(=\sqrt{\sqrt{5}-\sqrt{6-2\sqrt{5}}}=\sqrt{\sqrt{5}-\sqrt{5+1-2\sqrt{5}}}\)
\(=\sqrt{\sqrt{5}-\sqrt{(\sqrt{5}-1)^2}}=\sqrt{\sqrt{5}-(\sqrt{5}-1)}=\sqrt{1}=1\)
\(\sqrt{24+16\sqrt{2}}-\sqrt{24-16\sqrt{2}}=\sqrt{8\left(3+2\sqrt{2}\right)}-\sqrt{8\left(3-2\sqrt{2}\right)}\)
\(=\sqrt{8}.\left[\sqrt{\left(\sqrt{2}+1\right)^2}-\sqrt{\left(\sqrt{2}-1\right)^2}\right]=\sqrt{8}.\left(\sqrt{2}+1-\sqrt{2}+1\right)=2\sqrt{8}=4\sqrt{2}\)
\(\sqrt{24+16\sqrt{2}}-\sqrt{24-16\sqrt{2}}\)
\(=\sqrt{\left(4+2\sqrt{2}\right)^2}-\sqrt{\left(4-2\sqrt{2}\right)^2}\)
\(=4+2\sqrt{2}-4+2\sqrt{2}\)
\(=4\sqrt{2}\)
Giải:
\(\sqrt{24+16\sqrt{2}}-\sqrt{24-16\sqrt{2}}\)
\(=\sqrt{8+2.4.2\sqrt{2}+16}-\sqrt{16-2.4.2\sqrt{2}+8}\)
\(=\sqrt{\left(2\sqrt{2}+4\right)^2}-\sqrt{\left(4-2\sqrt{2}\right)^2}\)
\(=2\sqrt{2}+4-\left(4-2\sqrt{2}\right)\)
\(=2\sqrt{2}+4-4+2\sqrt{2}\)
\(=4\sqrt{2}\)
Vậy ...
a) \(\left(\frac{\sqrt{9}}{2}+\frac{\sqrt{1}}{2}-\sqrt{2}\right)\sqrt{2}\)
\(=\frac{3\sqrt{2}}{2}+\frac{\sqrt{2}}{2}-2\)
\(=\frac{4\sqrt{2}}{2}-2=2\sqrt{2}-2\)
b) \(\left(\frac{\sqrt{8}}{3}-\sqrt{24}+\frac{\sqrt{50}}{3}\right)\sqrt{6}\)
\(=\frac{4\sqrt{3}}{3}-12+\frac{10\sqrt{3}}{3}\)
\(=\frac{14\sqrt{3}}{3}-12\)
c) \(\left(\sqrt{6}+\sqrt{2}\right)\left(\sqrt{3}-\sqrt{1}\right)\) (đã sửa đề)
\(=\left(\sqrt{3}+1\right)\left(\sqrt{3}-1\right)\sqrt{2}\)
\(=\left(3-1\right)\sqrt{2}\)
\(=2\sqrt{2}\)
d) \(\left(3\sqrt{2}+1\right)\left(\sqrt{3\sqrt{2}-1}\right)\)
\(=\sqrt{3\sqrt{2}+1}\cdot\left(\sqrt{3\sqrt{2}+1}\cdot\sqrt{3\sqrt{2}-1}\right)\)
\(=\sqrt{3\sqrt{2}+1}\cdot\sqrt{18-1}\)
\(=\sqrt{3\sqrt{2}+1}\cdot\sqrt{17}\)
...
a, \(=2\sqrt{7}-8+15\sqrt{7}-12=17\sqrt{7}-20\)
b, \(=2\sqrt{2}-10\sqrt{2}+4\sqrt{2}=-4\sqrt{2}\)
c, \(=\frac{3}{8}.\frac{4}{3}-2.\frac{2}{5}=\frac{1}{2}-\frac{4}{5}=-\frac{3}{10}\)
d, \(\sqrt{\left(\sqrt{3-1}\right)^2}-\sqrt{\left(\sqrt{3-2}\right)^2}=\sqrt{3-1}-\sqrt{3-2}=\sqrt{2}-\sqrt{1}=\sqrt{2}-1\)
e, \(\sqrt{2-3}\) không tồn tại
\(8\sqrt{2}\left(\sqrt{24+16\sqrt{2}}-\sqrt{24-16\sqrt{2}}\right)\)
\(=8\sqrt{2}\left(\sqrt{16+2.4.\sqrt{8}+8}-\sqrt{16-2.4\sqrt{8}+8}\right)\)
\(=8\sqrt{2}\left(\sqrt{\left(4+\sqrt{8}\right)^2}-\sqrt{\left(4-\sqrt{8}\right)^2}\right)\)
\(=8\sqrt{2}\left(4+\sqrt{8}-4+\sqrt{8}\right)\)
\(=8\sqrt{2}.2\sqrt{8}\)
= 64
ta có\(8\sqrt{2}\cdot\left(\sqrt{24+16\sqrt{2}}-\sqrt{24-16\sqrt{2}}\right)=8\sqrt{2}\cdot\left(\sqrt{\left(4+\sqrt{8}\right)^2}-\sqrt{\left(4-\sqrt{8}\right)^2}\right)=8\sqrt{2}\cdot\left(4+\sqrt{8}-4+\sqrt{8}\right)=8\sqrt{2}\cdot2\sqrt{8}=64\)vây..................