![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
ĐKXĐ:\(\left\{{}\begin{matrix}\dfrac{7+14x}{x^2+1}\ge0\\x^2+1\ne0\left(LĐ\right)\end{matrix}\right.\)<=>14x+7\(\ge\)0<=>x\(\ge\)-\(\dfrac{1}{2}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Ok !! chi tiết =))
\(\sqrt{6+\sqrt{24}+\sqrt{12}+\sqrt{8}}-\sqrt{4+2\sqrt{3}}\)
\(=\sqrt{1+2+3+2\sqrt{2}.\sqrt{1}+2\sqrt{2}.\sqrt{3}+2\sqrt{1}.\sqrt{3}}-\sqrt{3+2\sqrt{3}+1}\)
\(=\sqrt{\left(\sqrt{1}+\sqrt{2}+\sqrt{3}\right)^2}-\sqrt{\left(\sqrt{3}+1\right)^2}\)
\(=1+\sqrt{2}+\sqrt{3}-\sqrt{3}-1\)
\(=\sqrt{2}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(A=\sqrt{24+8\sqrt{5}}+\sqrt{7-4\sqrt{3}}\)
\(=\sqrt{5+2.4\sqrt{5}+16}+\sqrt{4-2.2\sqrt{3}+3}\)
\(=\sqrt{\left(\sqrt{5}+4\right)}^2+\sqrt{\left(2-\sqrt{3}\right)}^2\)
\(=|\sqrt{5}+4|+|2-\sqrt{3}|\)
\(=\sqrt{5}+4+4-\sqrt{3}\)
\(=\sqrt{5}-\sqrt{3}+8\)
Ko biết đề sai ko?
![](https://rs.olm.vn/images/avt/0.png?1311)
Thế bạn có biết là \(\sqrt{3\left(x-1\right)^2}\ge0\forall x\) không?
Ta có: \(y=4+\sqrt{3x^2-6x+7}\)
\(=4+\sqrt{3\left(x^2-2x+\frac{7}{3}\right)}\)
\(=4+\sqrt{3\left(x^2-2x+1+\frac{4}{3}\right)}\)
\(=4+\sqrt{3\left(x-1\right)^2+4}\ge4+\sqrt{4}=6\)
Vậy: Giá trị nhỏ nhất của \(y=4+\sqrt{3x^2-6x+7}\) là 6
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(A=\frac{x^3+2x^2+4x}{x^2+2x}-\frac{4x}{x-2}-\frac{12x+8}{4-x^2}\)ĐK : \(x\ne0;\pm2\)
\(=\frac{x^2+2x+4}{x+2}-\frac{4x}{x-2}-\frac{12x+8}{4-x^2}\)
\(=\frac{\left(x^2+2x+4\right)\left(x-2\right)-4x\left(x+2\right)+12x+8}{\left(x+2\right)\left(x-2\right)}\)
\(=\frac{x^3-8-4x^2-8x+12x+8}{\left(x+2\right)\left(x-2\right)}=\frac{x^3-4x^2+4x}{\left(x+2\right)\left(x-2\right)}=\frac{x\left(x-2\right)}{x+2}\)