Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ \(\left(\sqrt{2}+\sqrt{3}\right)^2=2+3+2\sqrt{2.3}=5+2\sqrt{6}=5+\sqrt{24}\)
\(\left(\sqrt{10}\right)^2=10=5+5=5+\sqrt{25}\)
Vì \(\sqrt{24}< \sqrt{25}\)
=>\(\sqrt{2}+\sqrt{3}< \sqrt{10}\)
b/\(\left(\sqrt{3}+2\right)^2=3+4+4\sqrt{3}=7+4\sqrt{3}\)
\(\left(\sqrt{2}+\sqrt{16}\right)^2=2+16+2\sqrt{2.16}=18+4\sqrt{8}\)
=> \(\sqrt{3}+2< \sqrt{2}+\sqrt{16}\)
c/ \(16=\sqrt{16^2}\)
\(\sqrt{15}.\sqrt{17}=\sqrt{15.17}=\sqrt{\left(16-1\right)\left(16+1\right)}=\sqrt{16^2-1}\)
=> \(16>\sqrt{15}.\sqrt{17}\)
d/\(8^2=64=32+32=32+2\sqrt{256}\)
\(\left(\sqrt{15}+\sqrt{17}\right)^2=15+17+2\sqrt{15.17}=32+2\sqrt{255}\)
=> \(8>\sqrt{15}+\sqrt{17}\)
a) \(\left(5x-1\right)^6=729\)
\(\Leftrightarrow5x-1=3\)
\(\Leftrightarrow5x=4\)
\(\Leftrightarrow x=\dfrac{4}{5}\)
b: \(\Leftrightarrow\dfrac{2^3}{5^2}=\dfrac{2^x}{5^{x-1}}\)
=>x=3 và x-1=2
=>x=3
c: \(\Leftrightarrow\left(\dfrac{1}{2}\right)^{4x}=\left(\dfrac{1}{2}\right)^{10}\)
=>4x=10
=>x=5/2
d: =>3x=3
=>x=1
Bài 1:
a: \(=\sqrt{32.4}=\dfrac{9}{5}\sqrt{10}\)
b: \(=\sqrt{5\cdot5\cdot7\cdot7\cdot11\cdot11}=5\cdot7\cdot11=385\)
c: \(=5-2\sqrt{6}\)
d: \(=18-1=17\)
e: \(=3\sqrt{2}-2\sqrt{3}+7\sqrt{3}-7\sqrt{2}=-4\sqrt{2}+5\sqrt{3}\)
2)a) \(\sqrt{17-12\sqrt{2}}-2\sqrt{2}\)
\(=\sqrt{\left(3-2\sqrt{2}\right)^2}-2\sqrt{2}\)
\(=\left|3-2\sqrt{2}\right|-2\sqrt{2}\)
\(=3-2\sqrt{2}-2\sqrt{2}\)
\(=3-4\sqrt{2}\)
b) \(\sqrt{15-6\sqrt{6}}+\sqrt{6}\)
\(=\sqrt{\left(3-\sqrt{6}\right)^2}+\sqrt{6}\)
\(=\left|3-\sqrt{6}\right|+\sqrt{6}\)
\(=3-\sqrt{6}+\sqrt{6}\)
\(=3\)
b1. a)
Gỉa sử căn bậc 2 + căn bậc 3 lớn hơn hoặc bằng căn bậc 10
=> ( căn bậc 2 + căn bậc 3 )2 lớn hơn hoặc bằng căn bậc 102
2+ 2 * căn bậc 3 + 3 lớn hơn hoặc bằng 10
5 + 2 căn 6 lớn hơn hoặc bằng 10
2 căn 6 lớn hơn hoặc bằng 5
( 2 căn 6 )2 lớn hơn hoặc bằng 52
4 * 6 lớn hơn 25
24 lớn hơn hoặc bằng 25 (sai)
Vậy căn bậc 2 + căn bậc 3 nhỏ hơn căn bậc 10
\(a,\sqrt{4,9.360}=\sqrt{49.36}=\sqrt{49}.\sqrt{36}=7.6=42\)
b,\(\sqrt{2,25.0,04}=\sqrt{0.09}=0.3\)
c, \(\sqrt{3\dfrac{1}{16}.2\dfrac{4}{15}}=\sqrt{\dfrac{49}{16}.\dfrac{44}{15}}=\sqrt{\dfrac{49}{16}}.\sqrt{\dfrac{44}{15}}=\dfrac{7}{4}.1,7=2,99\approx3\)
e, \(\sqrt{\dfrac{144}{169}}=\dfrac{\sqrt{144}}{\sqrt{169}}=\dfrac{12}{13}\)
g,\(\dfrac{\sqrt{27}}{\sqrt{3}}=\sqrt{\dfrac{27}{3}}=\sqrt{9}=3\)
f,\(\sqrt{2,25}=\dfrac{3}{2}\)
n,\(\sqrt{\dfrac{25}{529}}=\dfrac{\sqrt{25}}{\sqrt{529}}=\dfrac{5}{23}\)
a, (3 + \(\sqrt{5}\))2 = 14+ \(6\sqrt{5}\) = 14 + \(\sqrt{180}\)
(\(2\sqrt{2}\) + \(\sqrt{6}\))2 = 14 + 4\(\sqrt{12}\) = 14 + \(\sqrt{192}\)
⇒ \(\left(3+\sqrt{5}\right)^2< \left(2\sqrt{2}+\sqrt{6}\right)^2\) (Do 14+\(\sqrt{180}\) < 14 + \(\sqrt{192}\))
Nên 3 + \(\sqrt{5}\) < 2\(\sqrt{2}\) + \(\sqrt{6}\) (Do \(\left(3+\sqrt{5}\right)^2< \left(2\sqrt{2}+\sqrt{6}\right)^2\))
b, c, d làm tương tự bạn nhé
Chọn đáp án C.
Ta có: