\(3+3^2+3^3+...+3^{100}\)

( vô trang cá nhân mình đọc nha )

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 9 2019

S=3+33+33+...+3100

=>3S=32+33+34+...+3101

=>3S-S=3101-3

=>2S=3101-3

=>S=\(\frac{3^{101}-3}{2}\)

vẬY S= \(\frac{3^{101}-3}{2}\)

!HỌC TỐT~

#Châu's ngốc

Đặt \(A=3+3^2+3^3+...+3^{100}\)

\(\Rightarrow3A=3^2+3^3+3^4+...+3^{100}+3^{101}\)

\(\Rightarrow3A-A=\left(3^2+3^3+3^4+...+3^{101}\right)-\left(3+3^2+3^3+...+3^{100}\right)\)

\(\Rightarrow2A=3^{101}-3\Rightarrow A=\frac{3^{101}-3}{2}\)

NV
22 tháng 6 2019

\(x=\frac{1}{2}\frac{\sqrt{\left(\sqrt{2}-1\right)^2}}{\sqrt{\left(\sqrt{2}-1\right)\left(\sqrt{2}+1\right)}}=\frac{1}{2}.\left(\sqrt{2}-1\right)\)

\(\Rightarrow2x=\sqrt{2}-1\Rightarrow2x+1=\sqrt{2}\)

\(\Rightarrow4x^2+4x+1=2\Rightarrow4x^2+4x-1=0\)

\(B=\left[x^3\left(4x^2+4x-1\right)-x\left(4x^2+4x-1\right)+4x^2+4x-1-1\right]^{2018}+2018\)

\(=\left(-1\right)^{2018}+2018=2019\)

27 tháng 2 2018

b)35568742902840

b: \(=3\left[\left(x+y\right)^2-2xy\right]-2\left[\left(x-y\right)^3+3xy\left(x-y\right)\right]\)

\(=3\left(1-2xy\right)-2\left(1+3xy\right)\)

\(=3-6xy-2-6xy=-12xy+1\)

c: \(=\left(x+y\right)^3-3\left(x^2+y^2+2xy\right)+3\left(x+y\right)+2012\)

\(=101^2-3\cdot101^2+3\cdot101+2012\)

=1002013

21 tháng 8 2018

a,

\(x^2+y^2=\left(x+y\right)^2-2xy=1^2-2\cdot\left(-6\right)=1-\left(-12\right)=13\)

\(x^3+y^3=\left(x+y\right)\left(x^2-xy+y^2\right)=1\cdot\left[13-\left(-6\right)\right]=19\)

\(x^5+y^5=\left(x+y\right)\left(x^2+y^2\right)^2-\left(2x^3y^2+xy^4+x^4y+2x^2y^3\right)=169-\left[2\left(xy\right)^2\left(x+y\right)+xy\left(x^3+y^3\right)\right]=169-\left[2\cdot36\cdot1-6\cdot19\right]=211\)

21 tháng 8 2018

b,

\(x^2+y^2=\left(x-y\right)^2+2xy=1+12=13\)

\(x^3-y^3=\left(x-y\right)\left(x^2+xy+y^2\right)=1\cdot\left(13+6\right)=19\)

7 tháng 7 2019

a) Ta có:

x + y = 3

=> ( x + y)2 = 9

=> x2 + 2xy + y2 = 9

=> 10 + 2xy = 9

=> 2xy = 9 - 10 = -1

=> xy = -1/2 

Ta có:

 x3 + y3 = (x + y)(x2 - xy + y2)

 = 3.(10 + 1/2) = 63/2

b) Ta có: x + y = a

=> (x + y)2 = a2

=> x2 + 2xy + y2 = a2

=> b + 2xy = a2

=> xy = (a2 - b)/2

Ta có:  x3 + y3 = (x + y)(x2 + xy + y2)

 = a[b + (a2 - b )/2] = ab + (a3 - b)/2.

7 tháng 7 2019

Làm b) công thức tổng quát luôn

x+y=a => (x+y)^2 =a^2 => x^2+y^2+2xy=a^2

Thay x^2+y^2=b  vào ta được:

b+2xy=a^2 => xy=(a^2-b)/2 

TA có x^3+y^3 =(x+y)(x^2+y^2 -xy)= a [b+(a^2-b)/2] =ab +(a^3-ab)/2=ab/2+a^3/2

17 tháng 6 2017

Ta có :

\(A=3+3^2+3^3+........+3^{29}\)

\(\Rightarrow3A=3^2+3^3+...............+3^{29}+3^{30}\)

\(\Rightarrow3A-A=\left(3^2+3^3+........+3^{30}\right)-\left(3+3^3+................+3^{29}\right)\)

\(\Rightarrow2A=3^{30}-3\)

\(\Rightarrow A=\dfrac{3^{30}-3}{2}\)

Lại có :

\(B=\dfrac{1}{3}+\dfrac{1}{3^2}+................+\dfrac{1}{3^{29}}\)

\(\Rightarrow3B=1+\dfrac{1}{3}+\dfrac{1}{3^2}+.............+\dfrac{1}{3^{28}}\)

\(\Rightarrow3B-B=\left(1+\dfrac{1}{3}+\dfrac{1}{3^2}+.......+\dfrac{1}{3^{28}}\right)-\left(\dfrac{1}{3}+\dfrac{1}{3^2}+..........+\dfrac{1}{3^{29}}\right)\)

\(\Rightarrow2B=1-\dfrac{1}{3^{29}}\)

\(\Rightarrow B=\dfrac{1-\dfrac{1}{3^{29}}}{2}\)

\(\dfrac{\Rightarrow A}{B}=\dfrac{\dfrac{3^{30}-3}{2}}{\dfrac{1-\dfrac{1}{3^{29}}}{2}}\)

17 tháng 6 2017

\(B=\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{29}}\)

\(3^{30}.B=3^{29}+3^{28}+...+3=A\)

\(\dfrac{A}{B}=\dfrac{3^{30}.B}{B}=3^{30}\)