\(^{2^5.9^5.}^{2^8.}^{9^8}\)

\(\frac{8^{20}+4^{20}...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(2^5\).\(9^5\).\(2^8\).\(9^8\)

=(\(2^5\).\(2^8\)).(\(9^5\).\(9^8\))

=\(^{2^{13}}\).\(9^{13}\)

=\(^{2.9^{13}}\)

=\(18^{13}\)

30 tháng 10 2020

1. \(x^{10}=25x^8\Leftrightarrow x^{10}:x^8=25\Leftrightarrow x^2=25=5^2\Leftrightarrow x=5\)

2. \(\frac{8^{20}+4^{20}}{4^{25}+64^5}=\frac{\left(2^3\right)^{20}+\left(2^2\right)^{20}}{\left(2^2\right)^{25}+\left(2^6\right)^5}=\frac{2^{60}+2^{40}}{2^{50}+2^{30}}=\frac{2^{40}\left(2^{20}+1\right)}{2^{30}\left(2^{20}+1\right)}=\frac{2^{40}}{2^{30}}=2^{10}\)

1)\(x^{10}=25x^8\)

\(\Rightarrow x^{10}:x^8=25\)

\(\Rightarrow x^2=5^2\)

\(\Rightarrow\orbr{\begin{cases}x=5\\x=-5\end{cases}}\)

2)\(\frac{8^{20}+4^{20}}{4^{25}+64^5}=\frac{\left(2^3\right)^{20}+\left(2^2\right)^{20}}{\left(2^2\right)^{25}+\left(2^6\right)^5}=\frac{2^{60}+2^{40}}{2^{50}+2^{30}}=\frac{2^{40}\left(2^{20}+1\right)}{2^{30}\left(2^{20}+1\right)}=2^{10}\)

31 tháng 8 2020

Bài 1 : \(M=\frac{8^{20}+4^{20}}{4^{25}+64^5}=\frac{\left(2^3\right)^{20}+\left(2^2\right)^{20}}{\left(2^2\right)^{25}+\left(2^6\right)^5}=\frac{2^{60}+2^{40}}{2^{50}+2^{30}}=\frac{2^{40}\left(2^{20}+1\right)}{2^{30}\left(2^{20}+1\right)}=2^{10}=1024\)

Bài 2 : a) \(\left(x^4\right)^2=\frac{x^{12}}{x^5}\)=> \(x^8=x^7\)

=> \(x^8-x^7=0\)

=> \(x^7\left(x-1\right)=0\)

=> \(x-1=0\Rightarrow x=1\)(vì x7 = 0 => x = 0 mà x \(\ne\)0 nên loại)

b) \(x^{10}-25x^8=0\)

=> \(x^8\left(x^2-25\right)=0\)

=> x8 = 0 hoặc x2 - 25 = 0

=> x = 0 hoặc x2 = 25

=> x = 0 hoặc x = \(\pm\)5

Bài 3 : a) \(\left(2x+3\right)^2=\frac{9}{121}=\left(\pm\frac{3}{11}\right)^2\)

=> \(\orbr{\begin{cases}2x+3=\frac{3}{11}\\2x+3=-\frac{3}{11}\end{cases}}\Rightarrow\orbr{\begin{cases}x=-\frac{15}{11}\\x=-\frac{18}{11}\end{cases}}\)

b) \(\left(3x-1\right)^3=-\frac{8}{27}=\left(-\frac{2}{3}\right)^3\)

=> 3x - 1 = -2/3

=> 3x = 1/3

=> x = 1/3 : 3 = 1/9

31 tháng 8 2020

1) Ta có \(M=\frac{8^{20}+4^{20}}{4^{25}+64^5}=\frac{\left(2^3\right)^{20}+\left(2^2\right)^{20}}{\left(2^2\right)^{25}+\left(2^6\right)^5}=\frac{2^{60}+2^{40}}{2^{50}+2^{30}}=\frac{2^{40}\left(2^{20}+1\right)}{2^{30}\left(2^{30}+1\right)}=2^{10}=1024\)

2) a) \(\left(x^4\right)^2=\frac{x^{12}}{x^5}\)

=> x8 = x7

=> x8 - x7 = 0

=> x7(x - 1) = 0

=> \(\orbr{\begin{cases}x^7=0\\x-1=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x=1\end{cases}}\)

Vậy x \(\in\left\{0;1\right\}\)

b) x10 = 25x8

=> x10 - 25x8 = 0

=> x8(x2 - 25) = 0

=> \(\orbr{\begin{cases}x^8=0\\x^2-25=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x=\pm5\end{cases}}\)

Vậy \(x\in\left\{0;5;-5\right\}\)

3) \(\left(2x+3\right)^2=\frac{9}{121}\)

=> \(\left(2x+3\right)^2=\left(\frac{3}{11}\right)^2\)

=> \(\orbr{\begin{cases}2x+3=\frac{3}{11}\\2x+3=-\frac{3}{11}\end{cases}}\Rightarrow\orbr{\begin{cases}2x=\frac{-30}{11}\\2x=-\frac{36}{11}\end{cases}}\Rightarrow\orbr{\begin{cases}x=-\frac{15}{11}\\x=-\frac{18}{11}\end{cases}}\)

Vậy \(x\in\left\{-\frac{15}{11};-\frac{18}{11}\right\}\)

b) \(\left(3x-1\right)^3=-\frac{8}{27}\)

=> \(\left(3x-1\right)^3=\left(-\frac{2}{3}\right)^3\)

=> \(3x-1=-\frac{2}{3}\)

=> \(3x=\frac{1}{3}\)

=> \(x=\frac{1}{9}\)

Vậy \(x=\frac{1}{9}\)

12 tháng 7 2016

\(M=\frac{8^{20}+4^{20}}{4^{25}+64^5}\)

\(M=\frac{\left(2^3\right)^{20}+\left(2^2\right)^{20}}{\left(2^2\right)^{25}+\left(2^6\right)^5}\)

\(M=\frac{2^{60}+2^{40}}{2^{50}+2^{30}}\)

\(M=\frac{2^{40}\left(2^{20}+1\right)}{2^{30}\left(2^{20}+1\right)}\)

\(M=2^{10}\)

\(M=1024\)

21 tháng 10 2019

Tính :

a) \(\frac{8^{14}}{4^{12}}=\frac{\left(2^3\right)^{14}}{\left(2^2\right)^{12}}=\frac{2^{42}}{2^{24}}=2^{18}=262144.\)

b) \(\frac{120^3}{40^3}=\left(\frac{120}{40}\right)^3=3^3=27.\)

Tìm x:

b) \(x^2-0,25=0\)

\(\Rightarrow x^2=0+0,25\)

\(\Rightarrow x^2=0,25\)

\(\Rightarrow\left[{}\begin{matrix}x=0,5\\x=-0,5\end{matrix}\right.\)

Vậy \(x\in\left\{0,5;-0,5\right\}.\)

c) \(\frac{8}{2^x}=2\)

\(\Rightarrow2^x=8:2\)

\(\Rightarrow2^x=4\)

\(\Rightarrow2^x=2^2\)

\(\Rightarrow x=2\)

Vậy \(x=2.\)

Chúc bạn học tốt!

21 tháng 10 2019

a, 2 mũ 17 phần 2 mũ 14

b,=30

mình chỉ làm được 2 câu thôi,chúc cậu học tốt!

22 tháng 7 2016

\(\frac{8^{20}+4^{20}}{4^{25}+64^5}=\frac{\left(2^3\right)^{20}+\left(2^2\right)^{20}}{\left(2^2\right)^{25}+\left(2^6\right)^5}=\frac{2^{60}+2^{40}}{2^{50}+2^{30}}=\frac{2^{40}\times\left(2^{20}+1\right)}{2^{30}\times\left(2^{20}+1\right)}=2^{10}=1024\)

Chúc bạn học tốt ^^

1 tháng 12 2016

- Có thể cho tôi một số bài tập dạng này không?

13 tháng 7 2017

a, \(\dfrac{5^4.20^4}{25^5.4^5}=\dfrac{5^4.2^8.5^4}{5^{10}.2^{10}}=\dfrac{1}{5^2.2^2}=\dfrac{1}{25.4}=\dfrac{1}{100}\)

b, \(\dfrac{2^7.9^3}{6^5.8^2}=\dfrac{2^7.3^6}{2^5.3^5.2^6}=\dfrac{3}{2^4}=\dfrac{3}{16}\)

c, \(\dfrac{45^{10}.5^{20}}{75^5}=\dfrac{5^{10}.3^{20}.5^{20}}{3^5.5^{10}}=5^{20}.3^{15}\)

d, \(\left(0,8\right)^5=\left(0,1\right)^5.8^5=\dfrac{1}{100000}.32768=0,32768\)

e, \(\dfrac{2^{15}.9^4}{6^6.8^3}=\dfrac{2^{15}.3^8}{2^6.3^6.2^9}=3^2=9\)

d, \(\dfrac{8^{20}+4^{20}}{4^{25}+64^5}=\dfrac{2^{60}+2^{40}}{2^{50}+2^{30}}=\dfrac{2^{40}.\left(2^{20}+1\right)}{2^{30}.\left(2^{20}+1\right)}=2^{10}=1024\)

Chúc bạn học tốt!!!

13 tháng 7 2017

\(\text{a) }\dfrac{5^4\cdot20^4}{25^5\cdot4^5}=\dfrac{5^4\cdot\left(5\cdot4\right)^4}{\left(5^2\right)^5\cdot4^5}=\dfrac{5^4\cdot5^4\cdot4^4}{5^{10}\cdot4^5}=\dfrac{5^8\cdot4^4}{5^{10}\cdot4^5}=\dfrac{1}{5^2\cdot4}=\dfrac{1}{25\cdot4}=\dfrac{1}{100}\)

\(\text{b) }\dfrac{2^7\cdot9^3}{6^5\cdot8^2}=\dfrac{2^7\cdot\left(3^2\right)^3}{\left(2\cdot3\right)^5\cdot\left(2^3\right)^2}=\dfrac{2^7\cdot3^6}{2^5\cdot3^5\cdot2^6}=\dfrac{2^7\cdot3^6}{2^5\cdot2^6\cdot3^5}=\dfrac{2^7\cdot3^6}{2^{11}\cdot3^5}=\dfrac{3}{2^4}=\dfrac{3}{16}\)

\(\text{c) }\dfrac{45^{10}\cdot5^{20}}{75^5}=\dfrac{\left(5\cdot9\right)^{10}\cdot5^{20}}{\left(25\cdot3\right)^5}=\dfrac{5^{10}\cdot9^{10}\cdot5^{20}}{25^5\cdot3^5}=\dfrac{5^{10}\cdot5^{20}\cdot\left(3^2\right)^{10}}{\left(5^2\right)^5\cdot3^5}=\dfrac{5^{30}\cdot3^{20}}{5^{10}\cdot3^5}=5^{20}\cdot3^{15}\)

\(\text{d) }\left(0.8\right)^5=\left(\dfrac{8}{10}\right)^5=\left(\dfrac{4}{5}\right)^5=\dfrac{4^5}{5^5}=\dfrac{64}{3125}\)

\(\text{e) }\dfrac{2^{15}\cdot9^4}{6^6\cdot8^3}=\dfrac{2^{15}\cdot\left(3^2\right)^4}{\left(2\cdot3\right)^6\cdot\left(2^3\right)^3}=\dfrac{2^{15}\cdot3^8}{2^6\cdot3^6\cdot2^9}=\dfrac{2^{15}\cdot3^8}{2^6\cdot2^9\cdot3^6}=\dfrac{2^{15}\cdot3^8}{2^{15}\cdot3^6}=3^2=9\)

\(f\text{) }\dfrac{8^{20}+4^{20}}{4^{25}+64^5}=\dfrac{\left(2^3\right)^{20}+\left(2^2\right)^{20}}{\left(2^2\right)^{25}+\left(2^6\right)^5}=\dfrac{2^{60}+2^{40}}{2^{50}+2^{30}}=\dfrac{2^{40}\left(2^{20}+1\right)}{2^{30}\left(2^{20}+1\right)}=2^{10}=1024\)

4 tháng 7 2018

đề bài là gì vậy bạn

11 tháng 12 2016

\(\frac{8^{20}+4^{20}}{4^{25}+64^5}\)=\(\frac{\left(2^3\right)^{20}+\left(2^2\right)^{20}}{\left(2^2\right)^{25}+\left(2^6\right)^5}\)=\(\frac{2^{60}+2^{40}}{2^{50}+2^{30}}\)=\(\frac{2^{40}\left(2^{20}+1\right)}{2^{30}\left(2^{20}+1\right)}\)=\(\frac{2^{40}}{2^{30}}\)= 210