
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Ta có : \(\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)-2^{32}\)
\(=\left(2-1\right)\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)-2^{32}\)
\(=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)-2^{32}\)
\(=\left(2^4-1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)-2^{32}\)
\(=\left(2^8-1\right)\left(2^8+1\right)\left(2^{16}+1\right)-2^{32}\)
\(=\left(2^{16}-1\right)\left(2^{16}+1\right)-2^{32}\)
\(=\left(2^{32}-1\right)-2^{32}\)
\(=-1\)
(2+1)(2^2+1)(2^4+1)(2^8+1)(2^16+1)-2^32=(2-1)(2+1)(2^2+1)(2^4+1)(2^8+1)(2^16+1)-2^32
=(2^2-1)(2^2+1)(2^4+1)(2^8+1)(2^16+1)-2^32=(2^4-1)(2^4+1)(2^8+1)(2^16+1)-2^32
=(2^8-1)(2^8+1)(2^16+1)-2^32=(2^16-1)(2^16+1)-2^32=2^32-1-2^32=-1

Đặt \(A=\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)\)
\(\Rightarrow A=\left(2-1\right)\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)\)
\(\Rightarrow A=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)\)
\(\Rightarrow A=\left(2^4-1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)\)
\(\Rightarrow A=\left(2^8-1\right)\left(2^8+1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)\)
\(\Rightarrow A=\left(2^{16}-1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)\)
\(\Rightarrow A=\left(2^{32}-1\right)\left(2^{32}+1\right)\)
\(\Rightarrow A=2^{64}-1\)
\(\Rightarrow B=2^{64}-1-2^{64}=-1\)
Ta có : \(\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)\)
\(=\left(2-1\right)\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)\)
\(=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)\)
\(=\left(2^4-1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)\)
\(=\left(2^8-1\right)\left(2^8+1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)=\left(2^{16}-1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)\)
\(=\left(2^{32}-1\right)\left(2^{32}+1\right)=2^{64}-1\)
Thay 264 - 1 vào B, ta được :
\(2^{64}-1-2^{64}=-1\)

B=(2+1)(22+1)(24+1)(28+1)(216+1)−232
=1.(2+1)(22+1)(24+1)(28+1)(216+1)−232
=(2-1)(2+1)(22+1)(24+1)(28+1)(216+1)−232
=(22-1)(22+1)(24+1)(28+1)(216+1)−232
=(24-1)(24+1)(28+1)(216+1)−232
=(28-1)(28+1)(216+1)−232
=(216-1)(216+1)−232
=232-1-232
=-1
A = ( 2 +1 )( 2^2 + 1 )...(2^16+1) - 2^32
A = ( 2 - 1) ( 2 + 1 )(2^2 + 1) .... (2^16 + 1) - 2^32
A = (2^2 - 1) (2^2 + 1) ...(2^16 + 1) - 2^32
A =( 2^ 4 - 1)( 2^4 + 1 )( 2^8 + 1) (2^16+1) -2^32
A = ( 2^8 - 1)( 2^ 8 + 1) ( 2^ 16 + 1)- 2^32
A = ( 2^16 - 1 )( 2^16 + 1) - 2^32
A = 2^32 - 1 - 2^32
A = - 1

b) \(B=\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)-2^{64}\)
\(=\left(2-1\right)\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)-2^{64}\)
\(=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)-2^{64}\)
\(=\left(2^4-1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)-2^{64}\)
\(=\left(2^8-1\right)\left(2^8+1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)-2^{64}\)
\(=\left(2^{16}-1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)-2^{64}\)
\(=\left(2^{32}-1\right)\left(2^{32}+1\right)-2^{64}\)
\(=\left(2^{64}-1\right)-2^{64}\)
\(=-1\)
\(\left(1^2-2^2\right)+\left(3^2-4^2\right)+....+\left(99^2-100^2\right)\)
\(=\left(1-2\right)\left(2+1\right)+\left(3-4\right)\left(4+3\right)+....+\left(99-100\right)\left(100+99\right)\)
\(=\left(-1\right)\left(1+2+3+....+100\right)=\frac{\left(-1\right)100.99}{2}=-4950\)

Nhân với 2-1 áp dụng bất đẳng thức a^2-b^2=(a-b)(a+b)
=> 2^64-1
(2+1)(22+1)(24+1)(28+1)(216+1)(232+1)
=[3(22+1)(24+1)](28+1)(216+1)(232+1)
=[(22-1)(22+1)](24+1)(28+1)(216+1)(232+1)
=[(24-1)(24+1)](28+1)(216+1)(232+1)
=[(28-1)(28+1)](216+1)(232+1)
=[(216-1)(216+1)](232+1)
=(232-1)(232+1)

(2 + 1)(22 + 1)(24 + 1)(28 + 1)(216 + 1) - 232
= (2 - 1)(2 + 1)(22 + 1)(24 + 1)(28 + 1)(216 + 1) - 232
= (22 - 1)(22 + 1)(24 + 1)(28 + 1)(216 + 1) - 232
= (24 - 1)(24 + 1)(28 + 1)(216 + 1) - 232
= (28 - 1)(28 + 1)(216 + 1) - 232
= (216 - 1)(216 + 1) - 232
= (232 - 1) - 232
= 232 - 1 - 232
= -1

như thế này chứ:
A=1002-992+982-972+...+22-12
B=12-22+32-42+...-20082-20092
C=3.(22+1)(24+1)(28+1)(216+1)-232
Nhân với (2-1) thì không thay đổi.
(2 + 1)(22 + 1)(24 + 1)(216 + 1)(232 + 1)
= (2 - 1)(2 + 1)(22 + 1)(24 + 1)(216 + 1)(232 + 1)
= (22 - 1) (22 + 1)(24 + 1)(216 + 1)(232 + 1)
= (24 - 1)(24 + 1)(216 + 1)(232 + 1)
= ...
= 264 - 1
Đây là bài toán lớp 8, về các hằng đẳng thức đáng nhớ. Không phải lớp 5 đâu nhé
128.(ko biết đúng hay sai.)