Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
đặt A=1+4+4^2+4^3+...+4^2018
B=1+2+2^2+2^3+...+2^2018
A=1+4+4^2+4^3+...+4^2018
4A=4+4^2+4^3+...+4^2019
4A-A=(4+4^2+4^3+...+4^2019)-(1+4+4^2+4^3+...+4^2018)
3A=4^2019-1
A=(4^2019)/3
B=1+2+2^2+2^3+...+2^2018
2B=2+2^2+2^3+...+2^2019
2B-B=(2+2^2+2^3+...+2^2019)-(1+2+2^2+2^3+...+2^2018)
B=2^2019-1
=>(1+4+4^2+4^3+...+4^2018)/(1+2+2^2+2^3+...+2^2018) =A/B=(4^2019-1)/3/(2^2019-1)
=(4^2019-1)/(3.2^2019-3)
Vậy ...............................
Đặt \(A=2^0+2^1+2^2+2^3+....+2^{2018}\)
Nên \(2A=2^1+2^2+2^3+2^4+....+2^{2019}\)
Do đó \(2A-A=2^{2018}-2^0\)hay \(A=2^{2018}-1\)
Vậy giá trị biểu thức là \(2^{2018}-1\)
\(2^0-2^1+2^2-2^3+...........+2^{2018}\)
đặt \(A=2^0-2^1+2^2-2^3+.....+2^{2018}\)
\(2A=2^1-2^2+2^3-2^4+.......+2^{2019}\)
\(2A+A=2^1-2^2+2^3-2^4+.....+2^{2019}+\left(2^0-2^1+2^2-2^3+....+2^{2018}\right)\)
\(3A=2^1-2^2+2^3-2^4+....+2^{2019}+2^0-2^1+2^2-2^3+....+2^{2019}\)
\(3A=2^0+2^{2019}\)
\(3A=1+2^{2019}\)
\(A=\frac{1+2^{2019}}{3}\)
Ta có : D=22020-22019-22018-...-22-2-20
\(\Rightarrow\)2D=22021-22020-22019-...-23-22-2
2D+D=(22021-22020-22019-...-23-22-2)+(22020-22019-22018-...-22-2-20)
3D=22021+20
\(\Rightarrow\)D=\(\frac{2^{2021}+2^0}{3}\)
Nếu có sai thì bạn thông cảm nhé! Đây là lần đầu tiên tớ làm dạng này.
M = 1 + 24 + 28 + ............. + 22012 + 22016
16M = 24 + 28 + ............. + 22012 + 22016 + 22020
16M - M = (24 + 28 + ............. + 22012 + 22016 + 22020) - ( 1 + 24 + 28 + ............. + 22012 + 22016)
15M = 22020 - 1
M = \(\frac{2^{2020}-1}{15}\)
N = 1 + 22 + 24 + ............. + 22016 + 22018
4N = 22 + 24 + ............. + 22016 + 22018 + 22020
4N - N = (22 + 24 + ............. + 22016 + 22018 + 22020) - ( 1 + 22 + 24 + ............. + 22016 + 22018)
3N = 22020 - 1
N = \(\frac{2^{2020}-1}{3}\)
\(\frac{N}{M}=\frac{2^{2020}-1}{3}:\frac{2^{2020}-1}{15}=\frac{2^{2020}-1}{3}.\frac{15}{2^{2020}-1}=\frac{15}{3}=5\)
A = (-1)(-1)^2(-1)^3...(-1)^2019
A = (-1)^1+2+3+...+2019
A = (-1)^2039190
A = 1
S = 1.2.3 + 2.3.4 + 3.4.5 + ... + 2018.2019.2020
4S = 1.2.3.4 + 2.3.4.4 + 3.4.5.4 + .... + 2018.2019.2020.4
4S = 1.2.3.4 + 2.3.4.(5 - 1) + 3.4.5.(6 - 2) + ... + 2018.2019.2020.(2021 - 2017)
4S = 1.2.3.4 + 2.3.4.5 - 1.2.3.4 + 3.4.5.6 - 2.3.4.5 + ... + 2018.2019.2020.2021 - 2017.2018.2019
4S = 2018.2019.2020.2021
S = 2018.2019.2020.2021 : 4 = ...
Đặt \(A=2^0+2^1+2^2+2^3+2^4+....+2^{2018}\)
\(\Rightarrow\)\(2A=2^1+2^2+2^3+2^4+2^5+.....+2^{2019}\)
\(\Rightarrow\)\(2A-A=\left(2^1+2^2+2^3+...+2^{2019}\right)-\left(2^0+2^1+...+2^{2018}\right)\)
\(\Rightarrow\)\(A=2^{2019}-1\)