![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\dfrac{2003x1999-2003x999}{2004x999+1004}\)
\(=\dfrac{2003x\left(1999-999\right)}{2004x\left(1000-1\right)+1004}\)
\(=\dfrac{2003x1000}{2004x1000-2004+1004}\)
\(=\dfrac{2003x1000}{2004x1000-1000}\)
\(=\dfrac{2003x1000}{\left(2004-1\right)x1000}\)
\(=\dfrac{2003x1000}{2003x1000}=1\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a)Để \(A=2003-\frac{1003}{999-x}\) có giá trị nhỏ nhất
\(\Rightarrow\frac{1003}{999-x}\) có giá trị lớn nhất
\(\frac{1003}{999-x}\ge1003\)
Dấu "=" xảy ra khi
\(\frac{1003}{999-x}=1003\)
=> 999 - x = 1
x = 999-1
x = 998
=> giá trị nhỏ nhất của \(A=2003-\frac{1003}{999-998}=2003-1003=1000\) tại x = 998
b) Để \(A=2003-\frac{1003}{999+x}\) đạt giá trị nhỏ nhất
=> \(\frac{1003}{999+x}\) có giá trị lớn nhất
mà x là số tự nhiên
\(\Rightarrow\frac{1003}{999+x}\ge\frac{1003}{999}\)
Dấu "=" xảy ra khi
1003/(999+x) = 1003/999
=> 999 + x = 999
x = 0
=> giá trị nhỏ nhất của A = 2003 - 1003/999+0 = 2003 - 1003/999 = 2002 và 4/999 tại x = 0
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
A = (2004 x 2004 x x 2004) x 2004 = C x 2004 (C có 2002 thừa số 2004).
C có tận cùng là 6 nhân với 2004 nên A có tận cùng là 4 (vì 6 x 4 = 24).
B = 2003 x 2003 x x 2003 (gồm 2004 thừa số) = (2003 x 2003 x 2003 x 2003) x (2003 x 2003 x 2003 x 2003).
Vì 2004 : 4 = 501 (nhòm) nên B có 501 nhóm, mỗi nhóm gồm 4 thừa số 2003.
Tận cùng của mỗi nhóm là 1 (vì 3 x 3 = 9 ; 9 x 3 = 27 ; 27 x 3 = 81).
Vậy tận cùng của A + B là 4 + 1 = 5.
Do đó A + B chia hết cho 5.
Sửa đề:
\(\dfrac{2003.1999-2003.999}{2004.999+1004}\)
\(=\dfrac{2003.\left(1999-999\right)}{\left(2003+1\right).999+1004}\)
\(=\dfrac{2003.1000}{2003.999+999+1004}\)
\(=\dfrac{2003.1000}{2003.999+2003}\)
\(=\dfrac{2003.1000}{2003.1000}\)
\(=1\)