\(20-6\sqrt{11}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 6 2021

\(20-6\sqrt{11}\)

\(\left(\sqrt{11}\right)^2-6\sqrt{11}+9\)

\(\left(\sqrt{11}\right)^2-6\sqrt{11}+3^2\)

\(\left(\sqrt{11}-3\right)^2\)

dễ thấy \(\sqrt{11}>3< =>\sqrt{11}-3>0\)

\(\left(\sqrt{11}-3\right)^2\)

\(\left|\sqrt{11}-3\right|\)

\(\sqrt{11}-3\)

19 tháng 8 2020

c, \(\sqrt{9x-9}-2\sqrt{x-1}=8\left(đk:x\ge1\right)\)

\(< =>\sqrt{9\left(x-1\right)}-2\sqrt{x-1}=8\)

\(< =>\sqrt{9}.\sqrt{x-1}-2\sqrt{x-1}=8\)

\(< =>3\sqrt{x-1}-2\sqrt{x-1}=8\)

\(< =>\sqrt{x-1}=8< =>\sqrt{x-1}=\sqrt{8}^2=\left(-\sqrt{8}\right)^2\)

\(< =>\orbr{\begin{cases}x-1=8\\x-1=-8\end{cases}< =>\orbr{\begin{cases}x=9\left(tm\right)\\x=-7\left(ktm\right)\end{cases}}}\)

d, \(\sqrt{x-1}+\sqrt{9x-9}-\sqrt{4x-4}=4\left(đk:x\ge1\right)\)

\(< =>\sqrt{x-1}+\sqrt{9\left(x-1\right)}-\sqrt{4\left(x-1\right)}=4\)

\(< =>\sqrt{x-1}+\sqrt{9}.\sqrt{x-1}-\sqrt{4}.\sqrt{x-1}=4\)

\(< =>\sqrt{x-1}+3\sqrt{x-1}-2\sqrt{x-1}=4\)

\(< =>\sqrt{x-1}\left(1+3-2\right)=4< =>2\sqrt{x-1}=4\)

\(< =>\sqrt{x-1}=\frac{4}{2}=2=\sqrt{2}^2=\left(-\sqrt{2}\right)^2\)

\(< =>\orbr{\begin{cases}x-1=2\\x-1=-2\end{cases}< =>\orbr{\begin{cases}x=3\left(tm\right)\\x=-1\left(ktm\right)\end{cases}}}\)

 \(a,\sqrt{12}+2\sqrt{27}+3\sqrt{75}-9\sqrt{48}=2\sqrt{3}+6\sqrt{3}+15\sqrt{3}-36\sqrt{3}\)

\(=-13\sqrt{3}\)

\(b,2\sqrt{3}.\left(\sqrt{27}+2\sqrt{48}-\sqrt{75}\right)=2\sqrt{3}\left(3\sqrt{3}+8\sqrt{3}-5\sqrt{3}\right)\)

\(=2\sqrt{3}.6\sqrt{3}=36\)

\(c,\left(2\sqrt{2}-\sqrt{3}\right)^2=8-4\sqrt{6}+3\)

\(=11-4\sqrt{6}\)

\(d,\left(1+\sqrt{3}-\sqrt{2}\right)\left(1+\sqrt{3}+\sqrt{2}\right)=1+2\sqrt{3}+3-2\)

\(=2+2\sqrt{3}\)

4 tháng 8 2018

\(\left(20.\sqrt{0.03}+12.\sqrt{3}-\frac{1}{5}.\sqrt{75}\right).\sqrt{6}\)

\(=20.\sqrt{0,03.6}+12.\sqrt{3.6}-\frac{1}{5}.\sqrt{75.6}\)

\(=20.\sqrt{\frac{9}{50}}+12.\sqrt{3^2.2}-\frac{1}{5}.\sqrt{15^2.2}\)

\(=6\sqrt{2}+36\sqrt{2}-3\sqrt{2}\)

\(=39\sqrt{2}\)

4 tháng 8 2018

\(=\sqrt{6}\left(2\sqrt{3}+12\sqrt{3}-\sqrt{3}\right)\)

\(=\sqrt{6}.13\sqrt{3}=13\sqrt{18}=39\sqrt{2}\)

14 tháng 9 2020

a, 2020 lớn hơn

14 tháng 9 2020

a)\(\left(\sqrt{2019.2021}\right)^2=2019.2021=\left(2020-1\right)\left(2020+1\right)=2020^2-1< 2020^2\)

=> \(\sqrt{2019.2021}< 2020\)

b) \(\left(\sqrt{2}+\sqrt{3}\right)^2=5+2\sqrt{6}>5+2\sqrt{4}=5+2.2=9\)

=> \(\sqrt{2}+\sqrt{3}>3\)

c) \(9+4\sqrt{5}=4+4\sqrt{5}+5=\left(2+\sqrt{5}\right)^2>\left(2+\sqrt{4}\right)^2=\left(2+2\right)^2=16\)

=> \(9+4\sqrt{5}>16\)

d) \(\sqrt{11}-\sqrt{3}>\sqrt{9}-\sqrt{1}=3-1=2\)

=> \(\sqrt{11}-\sqrt{3}>2\)

14 tháng 9 2020

a)\(\sqrt{4-2\sqrt{3}}-\sqrt{3}=\sqrt{3-2\sqrt{3}+1}-\sqrt{3}\)

\(=\sqrt{\left(\sqrt{3}-1\right)^2}-\sqrt{3}=\sqrt{3}-1-\sqrt{3}=-1\)

b) \(\sqrt{11+6\sqrt{2}}-3+\sqrt{2}=\sqrt{9+6\sqrt{2}+2}-3+\sqrt{2}\)

\(=\sqrt{\left(3+\sqrt{2}\right)^2}-3+\sqrt{2}=3+\sqrt{2}-3+\sqrt{2}=2\sqrt{2}\)

c) \(\sqrt{25x^2}-2x=-5x-2x=-7x\)(vì x < 0)

d) \(x-5+\sqrt{25-10x+x^2}=x-5+\sqrt{\left(5-x\right)^2}=x-5+x-5=2x-10\) (vì x > 5)

27 tháng 8 2020

\(a\)

\(\sqrt{2,7}\)\(.\)\(\sqrt{1,2}\)

\(=\)\(\sqrt{2,7.1,2}\)

\(=\)\(\sqrt{3,24}\)

\(=\)\(1,8\)

\(b\)

\(\sqrt{85}.\sqrt{125}.\sqrt{68}\)

\(=\)\(\sqrt{85.125.68}\)

\(=\)\(\sqrt{722500}\)

\(=\)\(850\)

\(c\)

\(\frac{\sqrt{13,5}}{\sqrt{4,5}}\)

\(=\)\(\frac{3,67}{2,12}\)

HỌC TỐT!!!

24 tháng 8 2020

a) \(\sqrt{\frac{196}{169}}=\frac{14}{13}\)

b) \(\sqrt{2\frac{14}{25}}=\sqrt{\frac{64}{25}}=\frac{8}{5}\)

c) \(\sqrt{\frac{0,36}{25}}=\frac{0,6}{5}=\frac{3}{25}\)

d) \(\sqrt{\frac{6,4}{4,9}}=\sqrt{\frac{64}{49}}=\frac{8}{7}\)

24 tháng 8 2020

a) \(\sqrt{\frac{196}{169}}=\sqrt{\left(\frac{14}{13}\right)^2}=\frac{14}{13}\)

b) \(\sqrt{2\frac{14}{25}}=\sqrt{\frac{64}{25}}=\sqrt{\left(\frac{8}{5}\right)^2}=\frac{8}{5}\)

c) \(\sqrt{\frac{0,36}{25}}=\sqrt{\left(\frac{0,6}{5}\right)^2}=\frac{0,6}{5}=\frac{6}{50}=\frac{3}{25}\)

d) \(\sqrt{\frac{6,4}{4,9}}=\sqrt{\frac{64}{49}}=\sqrt{\left(\frac{8}{7}\right)^2}=\frac{8}{7}\)

15 tháng 7 2018

a,    ta có  

        \(\sqrt{8}+\sqrt{15}< \sqrt{9}+\sqrt{16}< 3+4< 7\)             (1)

lại có         \(\sqrt{65}-1>\sqrt{64}-1>8-1>7\)                 (2)

từ (1) và(2) =>\(\sqrt{8}+\sqrt{15}< \sqrt{65}-1\)

bài 2 

\(M=\sqrt{\frac{\left(2^3\right)^{10}-\left(2^2\right)^{10}}{\left(2^2\right)^{11}-\left(2^3\right)^4}}=\sqrt{\frac{2^{30}-2^{20}}{2^{22}-2^{12}}}=\sqrt{\frac{2^{20}\left(2^{10}-1\right)}{2^{12}\left(2^{10}-1\right)}}=\sqrt{\frac{2^{20}}{2^{12}}}=\sqrt{2^8}=2^4\)