K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 7 2019

a) \(\frac{x+1}{2004}+\frac{x+2}{2003}=\frac{x+3}{2002}+\frac{x+4}{2001}\)

\(\Leftrightarrow\frac{x+2005}{2004}+\frac{x+2005}{2003}=\frac{x+2005}{2002}+\frac{x+2005}{2001}\)

\(\Leftrightarrow\left(x+2005\right)\left(\frac{1}{2004}+\frac{1}{2003}-\frac{1}{2002}-\frac{1}{2001}\right)=0\)

\(\Leftrightarrow x+2005=0\)

\(\Leftrightarrow x=-2005\)

b) Sửa đề :

\(\frac{201-x}{99}+\frac{203-x}{97}+\frac{205-x}{95}+3=0\)

\(\Leftrightarrow\frac{300-x}{99}+\frac{300-x}{97}+\frac{300-x}{95}=0\)

\(\Leftrightarrow\left(300-x\right)\left(\frac{1}{99}+\frac{1}{97}+\frac{1}{95}\right)=0\)

\(\Leftrightarrow x=300\)

c) \(\frac{2-x}{2002}-1=\frac{1-x}{2003}-\frac{x}{2004}\)

\(\Leftrightarrow\frac{2-x}{2002}+1=\frac{1-x}{2003}+1-\frac{x}{2004}+1\)

\(\Leftrightarrow\frac{2004-x}{2002}=\frac{2004-x}{2003}-\frac{2004-x}{2004}\)

\(\Leftrightarrow\left(2004-x\right)\left(\frac{1}{2002}-\frac{1}{2003}+\frac{1}{2004}\right)=0\)

\(\Leftrightarrow x=2004\)

Vậy....

17 tháng 2 2020

\(\frac{x}{2000}+\frac{x+1}{2001}+\frac{x+2}{2002}+\frac{x+3}{2003}=4\)

\(\Leftrightarrow\left(\frac{x}{2000}-1\right)+\left(\frac{x+1}{2001}-1\right)+\left(\frac{x+2}{2002}-1\right)+\left(\frac{x+3}{2003}-1\right)=4-4=0\)

\(\Leftrightarrow\frac{x-2000}{2000}+\frac{x-2000}{2001}+\frac{x-2000}{2002}+\frac{x-2000}{2003}=0\)

\(\Leftrightarrow\left(x-2000\right)\left(\frac{1}{2000}+\frac{1}{2001}+\frac{1}{2002}+\frac{1}{2003}\right)=0\)

\(\Leftrightarrow x-2000=0\)  ( do \(\frac{1}{2000}+\frac{1}{2001}+\frac{1}{2002}+\frac{1}{2003}\ne0\) )

\(\Leftrightarrow x=2000\)

Vậy x = 2000

Đây là cách của lớp 7 nha

@@ Học tốt

17 tháng 2 2020

\(\frac{x}{2000}\)- 1+\(\frac{x+1}{2001}\)-1+\(\frac{x+2}{2002}\)-1+\(\frac{x+3}{2003}\)-1=0

<=>\(\frac{x-2000}{2000}\)\(\frac{x-2000}{2001}\)\(\frac{x-2000}{2002}\)\(\frac{x-2000}{2003}\)=0

<=>\(\left(x-2000\right)\)\(\left(\frac{1}{2000}+\frac{1}{2001}+\frac{1}{2002}+\frac{1}{2003}\right)\)=0

Do \(\left(\frac{1}{2000}+\frac{1}{2001}+\frac{1}{2002}+\frac{1}{2003}\right)\)khác 0

=> \(x-2000=0\)<=> \(x=2000\)

22 tháng 5 2017

a) \(\dfrac{2x}{3}+\dfrac{2x-1}{6}=4-\dfrac{x}{3}\)

\(\Leftrightarrow\dfrac{4x+\left(2x-1\right)}{6}=\dfrac{24-2x}{6}\)

\(\Leftrightarrow4x+2x-1=24-2x\)

\(\Leftrightarrow6x+2x=24+1\)

\(\Leftrightarrow8x=25\)

\(\Leftrightarrow x=\dfrac{25}{8}\)

Vậy phương trình có một nghiệm là x = \(\dfrac{25}{8}\)

b) \(\dfrac{x-1}{2}+\dfrac{x-1}{4}=1-\dfrac{2\left(x-1\right)}{3}\)

\(\Leftrightarrow\dfrac{6\left(x-1\right)+3\left(x-1\right)}{12}=\dfrac{12-8\left(x-1\right)}{12}\)

\(\Leftrightarrow6\left(x-1\right)+3\left(x-1\right)=12-8\left(x-1\right)\)

\(\Leftrightarrow9\left(x-1\right)+8\left(x-1\right)=12\)

\(\Leftrightarrow17\left(x-1\right)=12\)

\(\Leftrightarrow17x-17=12\)

\(17x=12+17\)

\(\Leftrightarrow17x=29\)

\(\Leftrightarrow x=\dfrac{29}{17}\)

Vậy phương trình có một nghiệm là x = \(\dfrac{29}{17}\)

c) \(\dfrac{2-x}{2001}-1=\dfrac{1-x}{2002}-\dfrac{x}{2003}\)

\(\Leftrightarrow\dfrac{2-x}{2001}-\dfrac{1-x}{2002}-\dfrac{\left(-x\right)}{2003}=1\)

\(\Leftrightarrow\dfrac{2-x}{2001}+1-\dfrac{1-x}{2002}-1-\dfrac{\left(-x\right)}{2003}-1=1+1-1-1\)

\(\Leftrightarrow\dfrac{2-x}{2001}+\dfrac{2001}{2001}-\dfrac{1-x}{2002}-\dfrac{2002}{2002}-\dfrac{\left(-x\right)}{2003}-\dfrac{2003}{2003}=0\)

\(\Leftrightarrow\dfrac{2003-x}{2001}-\dfrac{2003-x}{2002}-\dfrac{2003-x}{2003}=0\)

\(\Leftrightarrow\left(2003-x\right)\left(\dfrac{1}{2001}-\dfrac{1}{2002}-\dfrac{1}{2003}\right)=0\)

\(\Leftrightarrow2003-x=0\)

\(\Leftrightarrow-x=-2003\)

\(\Leftrightarrow x=2003\)

Vậy phương trình có một nghiệm là x = 2003

29 tháng 5 2017

a) \(\dfrac{2x}{3}+\dfrac{2x-1}{6}=4-\dfrac{x}{3}\)

\(\Leftrightarrow\dfrac{4x}{6}+\dfrac{2x-1}{6}=\dfrac{24}{6}-\dfrac{2x}{6}\)

\(\Leftrightarrow4x+2x-1=24-2x\)

\(\Leftrightarrow4x+2x+2x=1+24\)

\(\Leftrightarrow8x=25\)

\(\Leftrightarrow x=\dfrac{25}{8}\)

Vậy S={\(\dfrac{25}{8}\)}

b) \(\dfrac{x-1}{2}+\dfrac{x-1}{4}=1-\dfrac{2\left(x-1\right)}{3}\)

\(\Leftrightarrow\dfrac{6\left(x-1\right)}{12}+\dfrac{3\left(x-1\right)}{12}=\dfrac{12}{12}-\dfrac{8\left(x-1\right)}{12}\)

\(\Leftrightarrow6\left(x-1\right)+3\left(x-1\right)=12-8\left(x-1\right)\)

\(\Leftrightarrow6x-6+3x-3=12-8x+8\)

\(\Leftrightarrow6x+3x+8x=6+3+12+8\)

\(\Leftrightarrow17x=29\)

\(\Leftrightarrow x=\dfrac{29}{17}\)

Vậy S={\(\dfrac{29}{17}\)}

10 tháng 8 2016

\(\frac{2-x}{2001}-1=\frac{1-x}{2002}-\frac{x}{2003}\)

\(\Leftrightarrow\frac{2-x}{2001}+1=\left(\frac{1-x}{2002}+1\right)+\left(\frac{-x}{2003}+1\right)\)

\(\Leftrightarrow\frac{2003-x}{2001}=\frac{2003-x}{2002}+\frac{2003-x}{2003}\)

\(\Leftrightarrow\left(2003-x\right)\left(\frac{1}{2001}-\frac{1}{2002}-\frac{1}{2003}\right)=0\)

\(\Leftrightarrow\) \(x=2003\) 

10 tháng 8 2016

↔ \(\frac{2-x}{2001}+1\)\(=\left(\frac{1-x}{2002}+1\right)+\left(\frac{x}{2003}+1\right)\)

↔ \(\frac{2003-x}{2001}\) \(=\frac{2003-x}{2002}+\frac{2003-x}{2003}\)

↔ \(\left(2003-x\right)\left(\frac{1}{2001}-\frac{1}{2002}-\frac{1}{2003}\right)=0\)

↔ x = 2003

2 tháng 3 2018

2.

pt <=> (x/2000 - 1) + (x+1/2001 - 1) + (x+2/2002 - 1) + (x+3/2003 - 1) + (x+4/2004 - 1 ) = 0

<=> x-2000/2000 + x-2000/2001 + x-2000/2002 + x-2000/2003 + x-2000/2004 = 0

<=> (x-2000).(1/2000 + 1/2001 + 1/2002 + 1/2003 + 1/2004) = 0

<=> x-2000=0 ( vì 1/2000 + 1/2001 + 1/2002 + 1/2003 + 1/2004 > 0 )

<=> x=2000

Tk mk nha

2 tháng 3 2018

1.

a, = (2x-1)^2-2.(2x-1)+1-4

    = (2x-1-1)^2-4

    = (2x-2)^2-4

    = (2x-2-2).(2x-2+2)

    = 2x.(2x-4)

b, = [x.(x+3)].[(x+1).(x+2)]

    = (x^2+3x).(x^2+3x+1)-8

    = (x^2+3x+1)^2-1-8

    = (x^2+3x+1)^2-9

    = (x^2+3x+1-3).(x^2+3x+1+3)

    = (x^2+3x-2).(x^2+3x+4)

    = ((x+1).(x+3).(x^2+3x-2)

Tk mk nha

28 tháng 8 2016

Ta có :

\(\frac{x+4}{2000}+\frac{x+3}{2001}=\frac{x+2}{2002}+\frac{x+1}{2003}\)

\(\Rightarrow\frac{x+4}{2000}+1+\frac{x+3}{2001}+1=\frac{x+2}{2002}+1+\frac{x+1}{2003}+1\)

\(\Rightarrow\frac{x+2004}{2000}+\frac{x+2004}{2001}=\frac{x+2004}{2002}+\frac{x+2004}{2003}\)

\(\Rightarrow\frac{x+2004}{2000}+\frac{x+2004}{2001}-\frac{x+2004}{2002}-\frac{x+2004}{2003}=0\)

\(\Rightarrow\left(x+2004\right)\left(\frac{1}{2000}+\frac{1}{2001}-\frac{1}{2002}-\frac{1}{2003}\right)=0\)

Mà \(\frac{1}{2000}+\frac{1}{2001}-\frac{1}{2002}-\frac{1}{2003}\ne0\)

\(\Rightarrow x+2004=0\)

\(\Rightarrow x=-2004\)

Vậy ...

30 tháng 8 2016

Ta có: \(\frac{x+4}{2000}+\frac{x+3}{2001}=\frac{x+2}{2002}+\frac{x+1}{2003}\)


\(\Rightarrow\frac{x+4}{2000}+1+\frac{x+3}{2001}+1=\frac{x+2}{2002}+1+\frac{x+1}{2003}+1\)

\(\Rightarrow\frac{x+2004}{2000}+\frac{x+2004}{2001}=\frac{x+2004}{2002}+\frac{x+2004}{2003}\)

\(\Rightarrow\frac{x+2004}{2000}+\frac{x+2004}{2001}-\frac{x+2004}{2002}-\frac{x+2004}{2003}=0\)