Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
\(P=\frac{1}{1+\sqrt{5}}+\frac{1}{\sqrt{5}+\sqrt{9}}+...+\frac{1}{\sqrt{2001}+\sqrt{2005}}\)
\(=\frac{1-\sqrt{5}}{\left(1+\sqrt{5}\right)\left(1-\sqrt{5}\right)}+\frac{\sqrt{5}-\sqrt{9}}{\left(\sqrt{5}+\sqrt{9}\right)\left(\sqrt{5}-\sqrt{9}\right)}+...+\frac{\sqrt{2001}-\sqrt{2005}}{\left(\sqrt{2001}+\sqrt{2005}\right)\left(\sqrt{2001}-\sqrt{2005}\right)}\)
\(=\frac{1-\sqrt{5}}{1-5}+\frac{\sqrt{5}-\sqrt{9}}{5-9}+...+\frac{\sqrt{2001}-\sqrt{2005}}{2001-2005}\)
\(=\frac{1-\sqrt{5}}{-4}+\frac{\sqrt{5}-\sqrt{9}}{-4}+..+\frac{\sqrt{2001}-\sqrt{2005}}{-4}\)
\(=\frac{1-\sqrt{5}+\sqrt{5}-\sqrt{9}+...+\sqrt{2001}-\sqrt{2005}}{-4}\)
\(=\frac{1-\sqrt{2005}}{-4}\)
\(=\frac{\sqrt{2005}-1}{4}\)
1/ Điều kiện xác định \(x\ge0\)
\(\frac{\sqrt{x}-1}{2}-\frac{\sqrt{x}+2}{3}=\sqrt{x}-1\)
\(\Leftrightarrow\left(\frac{\sqrt{x}}{2}-\frac{\sqrt{x}}{3}-\sqrt{x}\right)=\frac{1}{2}+\frac{2}{3}-1\)
\(\Leftrightarrow-\frac{5}{6}\sqrt{x}=\frac{1}{6}\Leftrightarrow\sqrt{x}=-\frac{1}{5}\) (vô lí)
Vậy pt vô nghiệm
2/ \(x-\left(\sqrt{x}-4\right)\left(\sqrt{x}-5\right)=-38\)
\(\Leftrightarrow x-\left(x-9\sqrt{x}+20\right)+38=0\)
\(\Leftrightarrow9\sqrt{x}=-18\Leftrightarrow\sqrt{x}=-2\) (vô lí)
Vậy pt vô nghiệm.
1)\(\frac{\sqrt{x}-1}{2}-\frac{\sqrt{x}+2}{3}=\sqrt{x}-1\)
Đặt \(a=\sqrt{x}-1\) ta đc:
\(\frac{a}{2}-\frac{a+3}{3}=a\)\(\Leftrightarrow\frac{a-6}{6}=a\)
\(\Leftrightarrow a-6=6a\)\(\Leftrightarrow a=-\frac{6}{5}\)
\(\Leftrightarrow\sqrt{x}-1=-\frac{6}{5}\)
\(\Leftrightarrow\sqrt{x}=-\frac{1}{5}\)
=>vô nghiệm (vì \(\sqrt{x}\ge0>-\frac{1}{5}\))
Có: A= \(\sqrt[3]{ax^2+by^2+cz^2}\) = \(\sqrt[3]{\frac{ax^3}{x}+\frac{by^3}{y}+\frac{cz^3}{z}}\) = \(\sqrt[3]{ax^3\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)}\)
= \(\sqrt[3]{ax^3}\) = \(\sqrt[3]{a}x\) =>\(\sqrt[3]{a}\) =\(\frac{A}{x}\)
Tương tự : \(\sqrt[3]{b}=\frac{A}{y}\) , \(\sqrt[3]{c}=\frac{A}{z}\)
=> \(\sqrt[3]{a}+\sqrt[3]{b}+\sqrt[3]{c}\) = \(\frac{A}{x}+\frac{A}{y}+\frac{A}{z}\) = A \(\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\) = A
hay \(\sqrt[3]{a}+\sqrt[3]{b}+\sqrt[3]{c}\) = \(\sqrt[3]{ax^2+by^2+cz^2}\)