\(\dfrac{9}{10}-\dfrac{1}{90}-\dfrac{1}{72}-\dfrac{1}{56}-\dfrac{1}{42}-\dfrac{1...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 8 2017

1,Ta có:\(\dfrac{9}{10}-\dfrac{1}{90}-\dfrac{1}{72}-\dfrac{1}{57}-\dfrac{1}{42}-\dfrac{1}{30}-\dfrac{1}{20}-\dfrac{1}{12}-\dfrac{1}{6}-\dfrac{1}{2}\) =\(\dfrac{9}{10}-\left(\dfrac{1}{90}+\dfrac{1}{72}+...+\dfrac{1}{2}\right)\)

= \(\dfrac{9}{10}-\left\{\dfrac{1}{\left(9.10\right)}+\dfrac{1}{\left(9.8\right)}+...+\dfrac{1}{\left(2.1\right)}\right\}\)

= \(\dfrac{9}{10}-\left(\dfrac{1}{9}-\dfrac{1}{10}+\dfrac{1}{8}-\dfrac{1}{9}+...+\dfrac{1}{1}-\dfrac{1}{2}\right).\left(\dfrac{1}{90}=\dfrac{1}{9.10}=\dfrac{1}{9}-\dfrac{1}{10}\right)\)=\(\dfrac{9}{10}-\left(1-\dfrac{1}{10}\right)\)

=\(\dfrac{9}{10}-\dfrac{9}{10}\)

= 0

Ý 2 dễ rồi bạn tự tính

18 tháng 8 2017

1, \(\dfrac{9}{10}-\dfrac{1}{90}-\dfrac{1}{72}-\dfrac{1}{56}-\dfrac{1}{42}-\dfrac{1}{30}-\dfrac{1}{20}-\dfrac{1}{12}-\dfrac{1}{6}-\dfrac{1}{2}\)

\(=\dfrac{9}{10}-\left(\dfrac{1}{90}+\dfrac{1}{72}+\dfrac{1}{56}+\dfrac{1}{42}+\dfrac{1}{30}+\dfrac{1}{20}+\dfrac{1}{6}+\dfrac{1}{2}\right)\)

\(=\dfrac{9}{10}-\left(\dfrac{1}{9.10}+\dfrac{1}{8.9}+...+\dfrac{1}{1.2}\right)\)

\(=\dfrac{9}{10}-\left(\dfrac{1}{9}-\dfrac{1}{10}+\dfrac{1}{8}-\dfrac{1}{9}+\dfrac{1}{7}-\dfrac{1}{8}+...+1-\dfrac{1}{2}\right)\)

\(=\dfrac{9}{10}-\left(\dfrac{-1}{10}+1\right)=\dfrac{9}{10}-\dfrac{9}{10}=0\)

2, \(\dfrac{-5}{11}\cdot\dfrac{13}{17}-\dfrac{5}{11}.\dfrac{4}{17}\)

\(=\dfrac{-5}{11}\cdot\dfrac{13}{17}+\dfrac{-5}{11}.\dfrac{4}{17}\)

\(=\dfrac{-5}{11}\left(\dfrac{13}{17}+\dfrac{4}{17}\right)=\dfrac{-5}{11}.1=\dfrac{-5}{11}\)

19 tháng 11 2017

8,A=\(\dfrac{9}{10}-\left(\dfrac{1}{10\times9}+\dfrac{1}{9\times8}+\dfrac{1}{8\times7}+...+\dfrac{1}{2\times1}\right)\)

=\(\dfrac{9}{10}-\left(\dfrac{1}{10}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{8}+...+\dfrac{1}{2}-1\right)\)

=\(\dfrac{9}{10}-\left(\dfrac{1}{10}-1\right)\)

=\(\dfrac{9}{10}-\dfrac{\left(-9\right)}{10}\)

=\(\dfrac{9}{5}\)

hihahihahiha

28 tháng 2 2018

bay bị chập p

Bài 1: 

a: \(A=\left(-\dfrac{1}{5}\right)^{33}:\left(-\dfrac{1}{5}\right)^{32}=\dfrac{-1}{5}\)

c: \(C=\dfrac{2^{12}\cdot3^{10}+3^9\cdot2^9\cdot2^3\cdot3\cdot5}{2^{12}\cdot3^{12}+2^{11}\cdot3^{11}}\)

\(=\dfrac{2^{12}\cdot3^{10}\left(1+5\right)}{2^{11}\cdot3^{11}\cdot7}=\dfrac{2}{3}\cdot\dfrac{6}{7}=\dfrac{12}{21}=\dfrac{4}{7}\)

28 tháng 6 2018

\(C=\dfrac{9}{10}-\dfrac{1}{90}-\dfrac{1}{72}-\dfrac{1}{56}-\dfrac{1}{42}-\dfrac{1}{30}-\dfrac{1}{20}-\dfrac{1}{6}-\dfrac{1}{2}\)

\(\Leftrightarrow C=\dfrac{9}{10}-\left(\dfrac{1}{2}+\dfrac{1}{6}+\dfrac{1}{20}+\dfrac{1}{30}+\dfrac{1}{42}+\dfrac{1}{56}+\dfrac{1}{72}+\dfrac{1}{90}\right)\)

\(\Leftrightarrow C=\dfrac{9}{10}-\left(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+\dfrac{1}{5.6}+\dfrac{1}{7.8}+\dfrac{1}{9.10}\right)\)

\(\Leftrightarrow C=\dfrac{9}{10}-\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+.....+\dfrac{1}{9}-\dfrac{1}{10}\right)\)

\(\Leftrightarrow C=\dfrac{9}{10}-\left(1-\dfrac{1}{10}\right)\)

\(\Leftrightarrow C=\dfrac{9}{10}-\dfrac{9}{10}\)

\(\Leftrightarrow C=0\)

10 tháng 12 2017

a)\(0,5+\dfrac{1}{3}+0,4+\dfrac{5}{7}+\dfrac{1}{6}-\dfrac{4}{35}\)

=\(\left(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{6}\right)+\left(\dfrac{2}{5}+\dfrac{5}{7}-\dfrac{4}{35}\right)=1+1=2\)

b) \(\dfrac{8}{9}-\dfrac{1}{72}-\dfrac{1}{56}-\dfrac{1}{42}-\dfrac{1}{30}-\dfrac{1}{20}-\dfrac{1}{12}-\dfrac{1}{6}-\dfrac{1}{2}\)

=\(\dfrac{8}{9}-\left(\dfrac{1}{72}+\dfrac{1}{56}+\dfrac{1}{42}+\dfrac{1}{30}+\dfrac{1}{20}+\dfrac{1}{12}+\dfrac{1}{6}+\dfrac{1}{2}\right)\)

=\(\dfrac{8}{9}-\left(\dfrac{1}{8}-\dfrac{1}{9}+\dfrac{1}{7}-\dfrac{1}{8}+...+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{2}\right)=\dfrac{8}{9}-\dfrac{8}{9}=0\)

11 tháng 12 2017

thế này gọi là gian lận nhaucche

tự đăng tự trả lời thì ko nên đăng làm gìgianroi

ko đc gì đâu bucqua

19 tháng 6 2018

8)\(\frac{4}{9}:\left(-\frac{1}{7}\right)+6\frac{5}{9}:\left(-\frac{1}{7}\right)\)

=\(\frac{4}{9}:\left(-\frac{1}{7}\right)+\frac{59}{9}:\left(-\frac{1}{7}\right)\)

=\(\left(\frac{4}{9}+\frac{59}{9}\right).\left(-7\right)\)

=7.(-7)

=-49

11 tháng 11 2018

a)= \(\left(\dfrac{4}{9}-\dfrac{17}{18}\right)+\left(\dfrac{17}{14}-\dfrac{5}{7}\right)+\dfrac{11}{125}\)

= \(\dfrac{-1}{2}\) + \(\dfrac{1}{2}\) + \(\dfrac{11}{125}\)

= 0 + \(\dfrac{11}{125}\)

= \(\dfrac{11}{125}\)

b) \(=\left(1-1\right)+\left(\dfrac{-1}{2}-\dfrac{1}{2}\right)+\left(2-2\right)\) +

\(\left(\dfrac{-2}{3}-\dfrac{1}{3}\right)+\left(3-3\right)+\left(\dfrac{-3}{4}-\dfrac{1}{4}\right)\) + 4

= 0 + (-1) + 0 + (-1) + 0 + (-1) + 4

= -1

c) = \(\dfrac{1}{3}.\dfrac{14}{25}-\dfrac{1}{2}.\dfrac{14}{25}\)

= \(\dfrac{14}{25}.\left(\dfrac{1}{3}-\dfrac{1}{2}\right)\)

= \(\dfrac{14}{25}.\left(\dfrac{-1}{6}\right)\)

= \(\dfrac{-7}{75}\)

d) = \(\left(\dfrac{3}{7}+\dfrac{4}{7}\right)+\left(\dfrac{5}{13}-\dfrac{18}{13}\right)\)

= 1 + (-1)

= 0

4 tháng 12 2017

a)\(\left|-0.75\right|+\dfrac{1}{4}-2\dfrac{1}{2}\)

=0.75+0.25-2.5

=1-2.5=-1.5

b)\(15.\dfrac{1}{5}:\left(\dfrac{-5}{7}\right)-2\dfrac{1}{5}.\left(\dfrac{-7}{5}\right)\)

=3.(-1.4)+3.08

=-4.2+3.08=-1.12

c)\(\dfrac{5}{17}+\dfrac{2}{3}-\dfrac{20}{12}+\dfrac{7}{9}+\dfrac{12}{17}\)

=\(\dfrac{49}{51}-\dfrac{5}{3}+\dfrac{7}{9}+\dfrac{12}{17}\)

=\(\dfrac{-12}{17}+\dfrac{7}{9}+\dfrac{12}{17}\)

=\(\dfrac{11}{153}+\dfrac{12}{17}\)

=\(\dfrac{7}{9}\)

d)\(\dfrac{5}{15}+\dfrac{14}{25}-\dfrac{12}{9}+\dfrac{2}{7}+\dfrac{11}{25}\)

=\(\dfrac{67}{75}-\dfrac{4}{3}+\dfrac{2}{7}+\dfrac{11}{25}\)

=-0.44+\(\dfrac{127}{175}\)

=\(\dfrac{2}{7}\)

7 tháng 3 2018

T làm biếng lắm; làm C thôi

\(A=\dfrac{1}{2}.\dfrac{3}{4}.\dfrac{5}{6}...\dfrac{99}{100}\\ \Rightarrow A< \dfrac{2}{3}.\dfrac{4}{5}.\dfrac{6}{7}...\dfrac{100}{101}\\ \Rightarrow A^2< \left(\dfrac{1}{2}.\dfrac{3}{4}.\dfrac{5}{6}...\dfrac{99}{100}\right).\left(\dfrac{2}{3}.\dfrac{4}{5}.\dfrac{6}{7}...\dfrac{100}{101}\right)\\ =\dfrac{1}{2}.\dfrac{2}{3}.\dfrac{3}{4}.\dfrac{4}{5}...\dfrac{99}{100}.\dfrac{100}{101}\\ =\dfrac{1}{101}< \dfrac{1}{100}\\ \Rightarrow A< \dfrac{1}{10}\)

Làm tương tự ta được A > 1/15

9 tháng 3 2018

câu a

\(A=\dfrac{1}{11}+\dfrac{1}{12}+...+\dfrac{1}{30}>\dfrac{20}{30}=\dfrac{2}{3}>\dfrac{1}{3}\)

\(A=\left(\dfrac{1}{11}+..+\dfrac{1}{15}\right)+\left(\dfrac{1}{16}+...+\dfrac{1}{30}\right)< 5.\dfrac{1}{10}+25.\dfrac{1}{15}=\dfrac{1}{2}+\dfrac{5}{3}=\dfrac{8}{6}=\dfrac{4}{3}< \dfrac{5}{2}\)