Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(=\frac{1}{99.97}-\frac{1}{2}\left(\frac{1}{95}-\frac{1}{97}+\frac{1}{93}-\frac{1}{95}+...+\frac{1}{3}-\frac{1}{5}+1-\frac{1}{3}\right)\)
\(=\frac{1}{99.97}-\frac{1}{2}.\frac{96}{97}=\frac{1}{99.97}-\frac{48}{97}=-\frac{4751}{99.97}\)
\(-\dfrac{1}{30}-\dfrac{1}{15.13}-\dfrac{1}{13.11}-...-\dfrac{1}{5.3}-\dfrac{1}{3.1}\)
Đặt \(A=-\dfrac{1}{30}-\dfrac{1}{15.13}-\dfrac{1}{13.11}-...-\dfrac{1}{5.3}-\dfrac{1}{3.1}\)
\(\Rightarrow2A=-\dfrac{1}{15}-\left(\dfrac{2}{15.13}+\dfrac{2}{13.11}+...+\dfrac{2}{5.3}+\dfrac{2}{3.1}\right)\)
\(\Rightarrow2A=-\dfrac{1}{15}-\left(\dfrac{1}{15}-\dfrac{1}{13}+\dfrac{1}{13}-\dfrac{1}{11}+...+\dfrac{1}{5}-\dfrac{1}{3}+\dfrac{1}{3}-1\right)\)
\(\Rightarrow2A=-\dfrac{1}{15}-\left(\dfrac{1}{15}-1\right)=-\dfrac{1}{15}-\dfrac{1}{15}+1\)
\(=\dfrac{13}{15}\)
Vậy...................
Chúc bạn học tốt!!!
\(9^{x+1}-5.3^{2x}=72\)
\(\rightarrow9^x.9-5.\left(3^2\right)^x=72\)
\(\rightarrow9^x.9-5.9^x=72\)
\(\rightarrow9^x\left(9-5\right)=72\)
\(\rightarrow4.9^x=72\)
\(\rightarrow9^x=18\)
\(\Rightarrow x=1,315...\)
Vậy \(x=1,315...\)
a: \(7\cdot3^x=5\cdot3^7+2\cdot3^7\)
\(\Leftrightarrow7\cdot3^x=7\cdot3^7\)
=>3x=37
hay x=7
b: \(4^{x+3}-3\cdot4^{x+1}=13\cdot4^{11}\)
\(\Leftrightarrow4^{x+1}\left(4^2-3\right)=13\cdot4^{11}\)
=>x+1=11
hay x=10
d: \(\left(x-1\right)^{13}=\left(x-1\right)^{12}\)
\(\Leftrightarrow\left(x-1\right)^{12}\left(x-2\right)=0\)
hay \(x\in\left\{1;2\right\}\)
\(\left\{x^2-\left[6^2-\left(8^2-9\cdot7\right)^3-7\cdot5\right]^3-5\cdot3\right\}^3=1\\ \Rightarrow x^2-\left[36-\left(64-63\right)^3-35\right]^3-15=1\\ \Rightarrow x^2-\left[36-35-1^3\right]^3=16\\ \Rightarrow x^2-0^3=16\\ \Rightarrow x^2=16\\ \Rightarrow x=\pm4\)Vậy \(x=\pm4\)
\(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}\)
\(=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{6}-\frac{1}{7}\)
\(=1-\frac{1}{7}\)
\(=\frac{6}{7}\)
\(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}\)
\(=\frac{1}{1}X2+\frac{1}{2}X3+\frac{1}{3}X4+\frac{1}{4}X5+\frac{1}{5}X6+\frac{1}{6}X7\)
\(=\) \(\left(1-\frac{1}{2}\right)+\left(\frac{1}{2}-\frac{1}{3}\right)+\left(\frac{1}{3}-\frac{1}{4}\right)+\left(\frac{1}{4}-\frac{1}{5}\right)+\left(\frac{1}{5}-\frac{1}{6}\right)+\left(\frac{1}{6}-\frac{1}{7}\right)\)
\(=1-\frac{1}{7}\)
\(=\frac{6}{7}\)
\(=\dfrac{1}{97\cdot99}-\dfrac{1}{2}\left(\dfrac{2}{1\cdot3}+\dfrac{2}{3\cdot5}+...+\dfrac{2}{95\cdot97}\right)\)
\(=\dfrac{1}{97\cdot99}-\dfrac{1}{2}\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{95}-\dfrac{1}{97}\right)\)
\(=\dfrac{1}{97\cdot99}-\dfrac{1}{2}\cdot\dfrac{96}{97}\)
\(=\dfrac{1}{97\cdot99}-\dfrac{48}{97}=\dfrac{1-48\cdot99}{97\cdot99}=\dfrac{-4751}{9603}\)