\(15\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 10 2017

Lời giải:

\(15\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)

\(=\left(2^4-1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)

\(=\left(2^8-1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)

\(=\left(2^{16}-1\right)\left(2^{16}+1\right)\)

\(=2^{32}-1\)

Vậy giá trị của biểu thức trên là \(2^{32}-1\).

Chúc bạn học tốt!!!

15 tháng 10 2017

lam quen dc k

7 tháng 7 2017

Hỏi đáp Toán

15 tháng 8 2017

Bài 1:

a,\(127^2+146.127+73^2=127^2+2.127.73+73^2\)\(=\left(127+73\right)^2=200^2=40000\)

b,\(9^8.2^8-\left(18^4-1\right)\left(18^4+1\right)\)

\(18^8-\left(18^8-1\right)=1\)

\(c,100^2-99^2+98^2-97^2+...+2^2-1\)

\(=\left(100-99\right)\left(100+99\right)+\left(98-97\right)\left(98+97\right)+...+\left(2-1\right)\left(2+1\right)\)\(=199+195+...+3\)

áp dụng công thức Gauss ta đc đáp án là:10100

d, mk khỏi ghi đề dài dòng:

\(\dfrac{\left(780-220\right)\left(780+220\right)}{\left(125+75\right)^2}=\dfrac{560000}{40000}=14\)Bài 2:

\(A=\left(2-1\right)\left(2+1\right)\)\(\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)

\(A=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)Cứ tiếp tục ta đc \(A=2^{32}-1< B=2^{32}\)

\(\left(3-1\right)C=\left(3-1\right)\left(3+1\right)\left(3^2+1\right)...\left(3^2+16\right)\)giải như câu a đc:\(\left(3-1\right)C=3^{32}-1\)

\(\Rightarrow C=\dfrac{3^{32}-1}{3-1}=\dfrac{3^{32}-1}{2}< D=3^{32}-1\)

21 tháng 8 2017

1c,

\(=100^2-99^2+98^2-97^2+...+2^2-1^2\\ =\left(100+99\right)\left(100-99\right)+\left(98+97\right)\left(98-97\right)+...+\left(2+1\right)\left(2-1\right)\\ =\left(100+99\right)\cdot1+\left(98+97\right)\cdot1+...+\left(2+1\right)\cdot1\\ =100+99+98+97+...+2+1\\ =\dfrac{100\cdot101}{2}=5050\)

11 tháng 9 2020

a, \(\left(x+4\right)^2-\left(x+1\right)\left(x-1\right)=16\)

\(\Leftrightarrow x^2+8x+16-\left(x^2-x+x-1\right)=16\)

\(\Leftrightarrow8x+1=0\Leftrightarrow x=-\frac{1}{8}\)

b, \(\left(2x-1\right)^2+\left(x+3\right)^2-5\left(x+7\right)\left(x-7\right)=0\)

\(\Leftrightarrow4x^2-4x+1+x^2+6x+9-5\left(x^2-49\right)=0\)

\(\Leftrightarrow2x+255=0\Leftrightarrow x=-\frac{225}{2}\)

11 tháng 9 2020

c, \(\left(x+2\right)\left(x-2\right)-x^3-2x=15\)

\(\Leftrightarrow x^2-4-x^3-2x=15\)( vô nghiệm )

d, \(\left(x+3\right)^3-x\left(3x+1\right)^2+\left(2x+1\right)\left(4x^2-2x+1\right)=28\)

\(\Leftrightarrow x^3+9x^2+27x+27-9x^3+6x^2-x+8x^3+1=28\)

\(\Leftrightarrow15x^2+26=0\Leftrightarrow x^2\ne-\frac{26}{15}\)( vô nghiệm )

Tính nhẩm hết á, sai bỏ quá nhá, sắp đi hc ... nên chất lượng hơi kém xíu ~~~ 

AH
Akai Haruma
Giáo viên
15 tháng 7 2018

a)

\((x+2)(x+4)(x+6)(x+8)+16\)

\(=[(x+2)(x+8)][(x+4)(x+6)]+16\)

\(=(x^2+10x+16)(x^2+10x+24)+16\)

\(=a(a+8)+16\) (Đặt \(x^2+10x+16=a\) )

\(=a^2+2.4.a+4^2=(a+4)^2\)

\(=(x^2+10x+16+4)^2\)

\(=(x^2+10x+20)^2\)

AH
Akai Haruma
Giáo viên
15 tháng 7 2018

b) \((x^2+x)(x^2+x+1)-6\)

\(=(x^2+x)^2+(x^2+x)-6\)

\(=(x^2+x)^2-2(x^2+x)+3(x^2+x)-6\)

\(=(x^2+x)(x^2+x-2)+3(x^2+x-2)\)

\(=(x^2+x-2)(x^2+x+3)\)

\(=(x^2-x+2x-2)(x^2+x+3)\)

\(=[x(x-1)+2(x-1)](x^2+x+3)\)

\(=(x-1)(x+2)(x^2+x+3)\)

c)

\((x^2-4x)^2-8(x^2-4x)+15\)

\(=(x^2-4x)^2-3(x^2-4x)-5(x^2-4x)+15\)

\(=(x^2-4x)(x^2-4x-3)-5(x^2-4x-3)\)

\(=(x^2-4x-3)(x^2-4x-5)\)

\(=(x^2-4x-3)(x^2+x-5x-5)\)

\(=(x^2-4x-3)[x(x+1)-5(x+1)]=(x^2-4x-3)(x+1)(x-5)\)

18 tháng 7 2016

a) \(3x\left(2x+1\right)=5\left(2x+1\right)\)

\(3x=5\)

\(x=\frac{5}{3}\)

b) \(\left(3x-8\right)^2=\left(2x-7\right)^2\)

\(3x-8=2x-7\)

\(x=1\)

c) \(\left(4x^2-3x-18\right)^2-\left(4x^2+3x\right)^2=0\)

\(\left(4x^2-3x-18\right)^2=\left(4x^2+3x\right)^2\)

\(4x^2-3x-18=4x^2+3x\)

\(6x=-18\)

\(x=-3\)

d) Sai đề

e) ko bt

30 tháng 5 2017

a) 3(22+1)(24+1)(28+1)(216+1)

=(2+1)(2-1)(22+1)(24+1)(28+1)(216+1)

=(22-1)(22+1)(24+1)(28+1)(216+1)

=(24-1)(24+1)(28+1)(216+1)

.......

=(216-1)(216+1)=232-1