K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 7 2018

tích đúng mình làm cho

26 tháng 4 2018

1000010000803

chúc bạn học tốt~

26 tháng 4 2018

Sai rồi họk toán vs đamê à

18 tháng 10 2017

Đặt A(x)= P(x) - x2= 0

Có: A(1)=P(1) -12 =0

A(2) = P(2) -22=0

A(3)=P(3)-32=0

A(4)=P(4)-44=0

A(5)=P(5)-55=0

=> x thuộc {1;2;3;4;5} là nghiệm của A(x)

=> A(x)=(x-1)(x-2)(x-3)(x-4)(x-5)=P(x)-x2

P(x)= (x-1)(x-2)(x-3)(x-4)(x-5)+x2

P(6)=156

P(7)=769

P(8)=2584

P(9)=6801

11 tháng 11 2017

P(6)=73

21 tháng 6 2019

Tính :\(a,\)\(-\sqrt{\left(-6\right)^2}=-|-6|=-6\)

\(b,\)\(-\sqrt{\frac{-25}{-16}}=-\sqrt{\left(\frac{5}{4}\right)^2}=-|\frac{5}{4}|=-\frac{5}{4}\)

\(c,\)\(\sqrt{-\frac{-9}{25}}=\sqrt{\frac{9}{25}}=\sqrt{\left(\frac{3}{5}\right)^2}=|\frac{3}{5}|=\frac{3}{5}\)

\(d,\)\(\left(-\sqrt{7}\right)^2=7\)

\(e,\)\(-\left(\frac{\sqrt{3}}{4}\right)^2=-\frac{\sqrt{3}^2}{4^2}=-\frac{3}{16}\)

\(f,\)\(\sqrt{\left(-2\right)^4}=\sqrt{\left[\left(-2\right)^2\right]^2}=|-2^2|=4\)

So sánh :\(a,\) \(\sqrt{8}-1\)

\(2=3-1=\sqrt{9}-1\)

\(\Rightarrow\sqrt{8}-1< 2\)

\(b,\)\(\sqrt{\frac{16}{2}}=\sqrt{8}>\sqrt{3}\)

\(\Rightarrow\sqrt{\frac{16}{2}}>\sqrt{3}\)

17 tháng 5 2021
a) √ − 9 a − √ 9 + 12 a + 4 a 2 = √ − 9 a − √ 3 2 + 2.3 .2 a + ( 2 a ) 2 = √ 3 2 ⋅ ( − a ) − √ ( 3 + 2 a ) 2 = 3 √ − a − | 3 + 2 a | Thay a = − 9 ta được: 3 √ 9 − | 3 + 2 ⋅ ( − 9 ) | = 3.3 − 15 = − 6 . b) Điều kiện: m ≠ 2 1 + 3 m m − 2 √ m 2 − 4 m + 4 = 1 + 3 m m − 2 √ m 2 − 2.2 ⋅ m + 2 2 = 1 + 3 m m − 2 √ ( m − 2 ) 2 = 1 + 3 m | m − 2 | m − 2 +) m > 2 , ta được: 1 + 3 m m − 2 √ m 2 − 4 m + 4 = 1 + 3 m . ( 1 ) +) m < 2 , ta được: 1 + 3 m m − 2 √ m 2 − 4 m + 4 = 1 − 3 m . ( 2 ) Với m = 1 , 5 < 2 . Thay vào biểu thức ( 2 ) ta có: 1 − 3 m = 1 − 3.1 , 5 = − 3 , 5 Vậy giá trị biểu thức tại m = 1 , 5 là − 3 , 5 . c) √ 1 − 10 a + 25 a 2 − 4 a = √ 1 − 2.1 .5 a + ( 5 a ) 2 − 4 a = √ ( 1 − 5 a ) 2 − 4 a = | 1 − 5 a | − 4 a +) Với a < 1 5 , ta được: 1 − 5 a − 4 a = 1 − 9 a . ( 3 ) +) Với a ≥ 1 5 , ta được: 5 a − 1 − 4 a = a − 1 . ( 4 ) Vì a = √ 2 > 1 5 . Thay vào biểu thức ( 4 ) ta có: a − 1 = √ 2 − 1 . Vậy giá trị của biểu thức tại a = √ 2 là √ 2 − 1 . d) 4 x − √ 9 x 2 + 6 x + 1 = 4 x − √ ( 3 x ) 2 + 2.3 x + 1 = 4 x − √ ( 3 x + 1 ) 2 = 4 x − | 3 x + 1 | +) Với 3 x + 1 ≥ 0 ⇔ x ≥ − 1 3 , ta có: 4 x − ( 3 x + 1 ) = 4 x − 3 x − 1 = x − 1 . ( 5 ) +) Với 3 x + 1 < 0 ⇔ x < − 1 3 , ta có: 4 x + ( 3 x + 1 ) = 4 x + 3 x + 1 = 7 x + 1 . ( 6 ) Vì x = − √ 3 < − 1 3 . Thay vào biểu thức ( 6 ) , ta có: 7 x + 1 = 7 . ( − √ 3 ) + 1 = − 7 √ 3 + 1 . Giá trị của biểu thức tại x = − √ 3 là − 7 √ 3 + 1
19 tháng 5 2021

a) \sqrt{-9a}-\sqrt{9+12 a+4 a^{2}}9a9+12a+4a2

=\sqrt{-9 a}-\sqrt{3^{2}+2.3 .2 a+(2 a)^{2}}=9a32+2.3.2a+(2a)2

=\sqrt{3^{2} \cdot(-a)}-\sqrt{(3+2 a)^{2}}=32(a)(3+2a)2

=3 \sqrt{-a}-|3+2 a|=3a3+2a

Thay a=-9a=9 ta được:

3 \sqrt{9}-|3+2 \cdot(-9)|=3.3-15=-6393+2(9)=3.315=6.

b) Điều kiện: m \neq 2m=2

1+\dfrac{3 m}{m-2} \sqrt{m^{2}-4 m+4}1+m23mm24m+4

=1+\dfrac{3 m}{m-2} \sqrt{m^{2}-2.2 \cdot m+2^{2}}=1+m23mm22.2m+22

=1+\dfrac{3 m}{m-2} \sqrt{(m-2)^{2}}=1+m23m(m2)2

=1+\dfrac{3 m|m-2|}{m-2}=1+m23mm2

+) m>2m>2, ta được: 1+\dfrac{3 m}{m-2} \sqrt{m^{2}-4 m+4}=1+3 m1+m23mm24m+4=1+3m(1)(1)

+) m<2m<2, ta được: 1+\dfrac{3 m}{m-2} \sqrt{m^{2}-4 m+4}=1-3 m1+m23mm24m+4=13m(2)(2)

Với m=1,5<2m=1,5<2. Thay vào biểu thức (2)(2) ta có: 1-3 m=1-3.1,5=-3,513m=13.1,5=3,5

Vậy giá trị biểu thức tại m=1,5m=1,5 là -3,53,5.

c) \sqrt{1-10 a+25 a^{2}}-4a110a+25a24a

=\sqrt{1-2.1 .5 a+(5 a)^{2}}-4 a=12.1.5a+(5a)24a

=\sqrt{(1-5a)^{2}}-4 a=(15a)24a

=|1-5 a|-4 a=15a4a

+) Với a <\dfrac{1}{5}a<51, ta được: 1-5a-4 a=1-9a15a4a=19a(3)(3)

+) Với a \ge \dfrac{1}{5}a51, ta được: 5 a-1-4 a=a-15a14a=a1(4)(4)

Vì a=\sqrt{2}>\dfrac{1}{5}a=2>51. Thay vào biểu thức (4)(4) ta có: a-1=\sqrt{2}-1a1=21.

Vậy giá trị của biểu thức tại a=\sqrt{2}a=2 là \sqrt{2}-121.

d) 4 x-\sqrt{9 x^{2}+6 x+1}4x9x2+6x+1

=4 x-\sqrt{(3 x)^{2}+2.3 x+1}=4 x-\sqrt{(3 x+1)^{2}}=4x(3x)2+2.3x+1=4x(3x+1)2

=4 x-|3x+1|=4x3x+1

+) Với 3x+1 \geq 03x+10 \Leftrightarrow x \ge -\dfrac{1}{3}x31, ta có: 4 x-(3x+1)=4 x-3 x-1 =x-14x(3x+1)=4x3x1=x1(5)(5)

+) Với 3x+1<03x+1<0 \Leftrightarrow x <-\dfrac{1}{3}x<31, ta có: 4 x+(3 x+1)=4 x+3x+1=7x+14x+(3x+1)=4x+3x+1=7x+1(6)(6)

Vì x=-\sqrt{3}<-\dfrac{1}{3}x=3<31. Thay vào biểu thức (6)(6), ta có: 7 x+1=7 .(-\sqrt{3})+1=-7 \sqrt{3}+17x+1=7 .(3)+1=73+1.

Giá trị của biểu thức tại x=-\sqrt{3}x=3 là -7 \sqrt{3}+173+1.

23 tháng 8 2021

a, ĐK :a >= 3

\(25\sqrt{\frac{a-3}{25}}-7\sqrt{\frac{4a-12}{9}}-7\sqrt{a^2-9}+18\sqrt{\frac{9a^2-81}{81}}=0\)

\(\Leftrightarrow5\sqrt{a-3}-\frac{14}{3}\sqrt{a-3}-7\sqrt{\left(a-3\right)\left(a+3\right)}+6\sqrt{\left(a-3\right)\left(a+3\right)}=0\)

\(\Leftrightarrow\sqrt{a-3}\left(5-\frac{14}{3}-\sqrt{a+3}\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}\sqrt{a-3}=0\\\sqrt{a+3}=\frac{1}{3}\end{cases}}\Leftrightarrow\orbr{\begin{cases}a=3\left(tm\right)\\a=-\frac{2}{9}\left(loai\right)\end{cases}}\)

b, \(ĐK:x\ge-\frac{1}{2}\)

\(\Leftrightarrow3\sqrt{2x+1}-2\sqrt{2x+1}+\frac{1}{3}\sqrt{2x+1}=4\)

\(\Leftrightarrow\frac{4}{3}\sqrt{2x+1}=4\)

\(\Leftrightarrow\sqrt{2x+1}=3\)

\(\Leftrightarrow x=4\left(tm\right)\)

23 tháng 8 2021

a) đk: \(a\ge3\)

pt \(\Leftrightarrow25\frac{\sqrt{a-3}}{\sqrt{25}}-7\frac{\sqrt{4\left(a-3\right)}}{\sqrt{9}}-7\sqrt{a^2-9}+18\frac{\sqrt{9\left(a^2-9\right)}}{\sqrt{81}}=0\)

\(\Leftrightarrow5\sqrt{a-3}-\frac{7.2}{3}\sqrt{a-3}-7\sqrt{a^2-9}+\frac{18.3}{9}\sqrt{a^2-9}=0\)

\(\Leftrightarrow5\sqrt{a-3}-\frac{14}{3}\sqrt{a-3}-7\sqrt{a^2-9}+6\sqrt{a^2-9}=0\)

\(\Leftrightarrow\frac{1}{3}\sqrt{a-3}-\sqrt{a^2-9}=0\)

\(\Leftrightarrow\frac{1}{3}\sqrt{a-3}=\sqrt{a^2-9}\)

\(\Leftrightarrow\frac{1}{9}\left(a-3\right)=a^2-9\)

\(\Leftrightarrow a^2-\frac{1}{9}a-\frac{26}{3}=0\Leftrightarrow\orbr{\begin{cases}a=3\left(tm\right)\\a=-\frac{26}{9}\left(loại\right)\end{cases}}\)

2 tháng 6 2017
  1. ĐK \(x\ne0\Rightarrow\)\(\left(3x-1\right)\left(5-\frac{1}{2x}\right)=0\Leftrightarrow\orbr{\begin{cases}3x-1=0\\5-\frac{1}{2x}=0\end{cases}\Leftrightarrow\orbr{\begin{cases}3x=1\\10x=1\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=\frac{1}{3}\\x=\frac{1}{10}\end{cases}}}\)
  2. ĐK \(2x-1\ne0\Leftrightarrow x\ne\frac{1}{2}\)\(\frac{1}{4}+\frac{1}{3}:\left(2x-2\right)=5\Leftrightarrow\frac{1}{4}+\frac{1}{3\left(2x-1\right)}=5\)\(\Leftrightarrow3\left(2x-1\right)+4=4.3.5.\left(2x-1\right)\Leftrightarrow6x-3+4=120x-60\)\(\Leftrightarrow114x=61\Leftrightarrow x=\frac{61}{114}\)
  3. \(\left(2x+\frac{3}{5}\right)^2-\left(\frac{3}{5}\right)^2=0\Leftrightarrow\left(2x+\frac{3}{5}-\frac{3}{5}\right)\left(2x+\frac{3}{5}+\frac{3}{5}\right)=0\)\(2x\left(2x+\frac{6}{5}\right)=0\Leftrightarrow\orbr{\begin{cases}x=0\\2x=-\frac{6}{5}\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=0\\x=-\frac{3}{5}\end{cases}}\)
  4. \(3\left(3x-\frac{1}{2}\right)^3+\frac{1}{9}=0\Leftrightarrow3\left(3x-\frac{1}{2}\right)^3=-\frac{1}{9}\)\(\Leftrightarrow\left(3x-\frac{1}{2}\right)^3=-\frac{1}{27}\Leftrightarrow3x-\frac{1}{2}=\sqrt[3]{-\frac{1}{27}}\)\(\Leftrightarrow3x-\frac{1}{2}=-\frac{1}{3}\Leftrightarrow3x=\frac{1}{6}\Leftrightarrow x=\frac{1}{18}\)