Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=1.3+3.5+5.7+...+99.101
6A=1.3(5+1)+3.5(7-1)+5.7(9-3)+7.9(11-5)+...+99.101(103-97)
= 1.3.5+1.3+3.5.7-3.5+5.7.9-3.5.7+7.9.11-5.7.9+...+99.101.103-97.99.101
=1.3+99.101.103
=> A= \(\frac{1.3+99.101.103}{6}\)
S = 1.3 + 2.4 + 3.5 + 4.6 + ..... + 99.101 + 100.102
= 1.(2 + 1) + 2(3 + 1) + 3.(4 + 1) + ......... + 99(100 + 1) + 100.(101 + 1)
= 1.2 + 1 + 2.3 + 1 + 3.4 + 3 + ........ + 99.100 + 99 + 100.101 + 100
= (1.2 + 2.3 + 3.4 + ....... + 100.101 ) + (1 + 2 + 3 + ....... + 100)
Ta có công thức :
1.2+2.3+3.4+....+n(n+1)=n(n+1)(n+2)/3
1+2+3+...+n=n(n+1)/2
Áp dụng vào bài toán ta được :
S=100.101.102/3 +100.101/2
= 343400 + 5050
= 348450
S = 1.3 + 2.4 + 3.5 + 4.6 + ..... + 99.101 + 100.102
= 1.(2 + 1) + 2(3 + 1) + 3.(4 + 1) + ......... + 99(100 + 1) + 100.(101 + 1)
= 1.2 + 1 + 2.3 + 1 + 3.4 + 3 + ........ + 99.100 + 99 + 100.101 + 100
= (1.2 + 2.3 + 3.4 + ....... + 100.101 ) + (1 + 2 + 3 + ....... + 100)
Ta có công thức :
\(1.2+2.3+3.4+....+n\left(n+1\right)=\frac{n\left(n+1\right)\left(n+2\right)}{3}\)
\(1+2+3+...+n=\frac{n\left(n+1\right)}{2}\)
Áp dụng vào bài toán ta được :
\(S=\frac{100.101.102}{3}+\frac{100.101}{2}\)
= 343400 + 5050
= 348450
\(\frac{2^2}{1.3}+\frac{3^2}{2.4}+...+\frac{100^2}{99.101}\\ =\frac{2.2}{1.3}+\frac{3.3}{2.4}+...+\frac{100.100}{99.101}\\ =\frac{2.}{1.}\frac{3.}{2.}\frac{...}{...}\frac{100}{99}+\frac{2.}{3.}\frac{3.}{4.}\frac{...}{...}\frac{100}{101}\\ =\frac{100}{1}+\frac{2}{101}\\ =\frac{10100}{101}+\frac{2}{101}\\ =\frac{10102}{101}\)
\(\frac{2^2}{1.3}+\frac{3^2}{2.4}+\frac{4^2}{3.5}+...+\frac{100^2}{99.101}\)
\(=\frac{2.2}{1.3}+\frac{3.3}{2.4}+\frac{4.4}{3.5}+...+\frac{100.100}{99.101}\)
\(=\frac{2.3.4...100}{1.2.3...99}.\frac{2.3.4...100}{3.4.5...101}\)
\(=100.\frac{2}{101}\)
\(=\frac{200}{101}\)
tham khảo
Tại đây