Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=(1+2-3)+(-4+5+6-7)+(-8+9+10-11)+......(-2000+2001+2002-2003)
A=0+0....+0
A=0
Ta thấy 2-3-4=-5
6-7-8=-9
.............
1998-1999-2000=-2001
=> 1+2-3-4+5+6-7-8+....-1999-2000+2001-2003=1-5+5-9+9-...-2001+2001+2002-2003
=> A= 1+2002-2003=0
Vậy A=0
\(f_{\left(x\right)}=x^6-2002x^5+2002x^4-2002x^3+2002x^2-2002x+2006\)
\(=x^6-\left(x+1\right)x^5+\left(x+1\right)x^4-\left(x+1\right)x^3+\left(x+1\right)x^2-\left(x+1\right)x+x+5\)
\(=x^6-x^6-x^5+x^5+x^4-x^4-x^3+x^3+x^2-x^2-x+x+5\)
\(=5\)
Vậy \(f_{\left(x\right)}=5\)Tại x = 2001
Lạ OLM ghê làm sai mà vẫn được k ???
Ta có : x=2001 \(\Rightarrow\)x+1=2002
\(F\left(x\right)=x^6-\left(x-1\right).x^5+\left(x-1\right).x^4-\left(x-1\right).x^3+\left(x-1\right).x^2-\left(x-1\right).x+2006\)
\(F\left(x\right)=x^6-x^6-x^5+x^5+x^4-x^4-x^3+x^3+x^2-x^2-x+2006\)
\(F\left(2001\right)=-2001+2006=5\)
D = 1 + 2 - 3 - 4 + 5 + 6 - 7 - 8 + ... - 1999 - 2000 + 2001 + 2002 - 2003
D = ( 1 + 2 - 3 - 4 ) + ( 5 + 6 - 7 - 8 ) + ... + ( 1997 + 1998 - 1999 - 2000 ) + 2001 + 2002 - 2003
D = ( -4 ) + ( -4 ) + ... + ( -4 ) + ( 2001 + 2002 - 2003 )
D = ( -4 ) . 500 + 2000
D = -2000 + 2000
D = 0
D = 1 + 2 - 3 - 4 + 5 + 6 - 7 - 8 + ............. - 1999 - 2000 + 2001 + 2002 - 2003
D = ( 1 + 2 - 3 - 4 ) + ( 5 + 6 - 7 - 8 ) + ............ + ( 1997 + 1998 - 1999 - 2000 ) + 2001 + 2002 - 2003
D = ( -4 ) + ( -4 ) + .............. + ( -4 ) + ( 2001 + 2002 - 2003 )
D = ( -4 ) . 500 + 2000
D = -2000 + 2000
D = 0
Sửa lại đề: \(\left(125^3.7^4-5^9.49^2\right):2005^{2006}\)
Ta có : \(125^3.7^4=\left(5^3\right)^3.7^4=5^{3.3}.7^4=5^9.7^4\)
\(5^9.49^2=5^9.\left(7^2\right)^2=5^9.7^{2.2}=5^9.7^4\)
\(\Rightarrow125^3.7^4-5^9.49^2=5^9.7^4-5^9.7^4=0\)
mà \(2005^{2006}>0\)\(\Rightarrow\left(125^3.7^4-5^9.49^2\right):2005^{2006}=0\)
S = 1 + 2 - 3 - 4 + 5 + 6 - 7 - 8 + 9 + 10 - ...... + 1998 - 1999 - 2000 + 2001 + 2002
S = 1 + (2 - 3 - 4 + 5 )+ (6 - 7 - 8 + 9) + (10 - ...... + (1998 - 1999 - 2000 + 2001) + 2002
S=1+0+0...+0+2002
S= 1+2002
S=2003
Lời giải:
$S=(1+2-3-4)+(5+6-7-8)+(9+10-11-12)+...+(1997+1998-1999-2000)+2001+2002$
$=\underbrace{(-4)+(-4)+....+(-4)}_{500}+2001+2002$
$=(-4).500+2001+2002=2003$
1)\(\frac{-8}{5}+\frac{207207}{201201}\)
=\(\frac{-8}{5}+\frac{207}{201}\)
=\(\frac{-8}{5}+\frac{69}{67}\)
=\(\frac{-191}{335}\)
1253.75-1755: 5):20012002
= [(53)3.75-1755:5):20012002
= (59.75-1755:5):20012002
= (55.54.74.7-1754.175:5):20012002
= (55.354.7-1754.35):20012002
= (5.7.354.54-1754.35):20012002
= (35.1754-1754.35):20012002
= 0:20012002
= 0
=0 là đúng r đấy
Mk lm r