Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2\(^3\)+3.(\(\frac{1}{9}\))\(^6\)-2\(^{-2}\).4+[(-2)\(^2\):\(\frac{1}{2}\)].8
Gấp mk cần gấp!
HELP ME!
\(\frac{2^{12}.3^5-\left(2^2\right)^6.\left(3^2\right)^2}{2^{12}.3^6+\left(2^3\right)^4.3^5}.\)
\(=\frac{2^{12}.3^5-2^{12}.3^4}{2^{12}.3^6+2^{12}.3^5}\)
\(=\frac{2^{12}.3^4\left(3-1\right)}{2^{12}.3^5\left(3+1\right)}.\)
\(=\frac{3-1}{3\left(3-1\right)}\)
\(=\frac{2}{6}=\frac{1}{3}\)
Study well
a) \(\frac{x-6}{7}+\frac{x-7}{8}+\frac{x-8}{9}=\frac{x-9}{10}+\frac{x-10}{11}+\frac{x-11}{12}\)
=> \(\left(\frac{x-6}{7}+1\right)+\left(\frac{x-7}{8}+1\right)+\left(\frac{x-8}{9}+1\right)=\left(\frac{x-9}{10}+1\right)+\left(\frac{x-10}{11}+1\right)+\left(\frac{x-11}{12}+1\right)\)
=> \(\frac{x+1}{7}+\frac{x+1}{8}+\frac{x+1}{9}-\frac{x+1}{10}-\frac{x+1}{11}+\frac{x+1}{12}=0\)
=> \(\left(x+1\right)\left(\frac{1}{7}+\frac{1}{8}+\frac{1}{9}-\frac{1}{10}-\frac{1}{11}-\frac{1}{12}\right)=0\)
=> x + 1 = 0
=> x = -1
b) \(\frac{x-1}{2020}+\frac{x-2}{2019}-\frac{x-3}{2018}=\frac{x-4}{2017}\)
=> \(\left(\frac{x-1}{2020}-1\right)+\left(\frac{x-2}{2019}-1\right)-\left(\frac{x-3}{2018}-1\right)=\left(\frac{x-4}{2017}-1\right)\)
=> \(\frac{x-2021}{2020}+\frac{x-2021}{2019}-\frac{x-2021}{2018}=\frac{x-2021}{2017}\)
=> \(\left(x-2021\right)\left(\frac{1}{2020}+\frac{1}{2019}-\frac{1}{2018}-\frac{1}{2017}\right)=0\)
=> x - 2021 = 0
=> x = 2021
c) \(\left(\frac{3}{4}x+3\right)-\left(\frac{2}{3}x-4\right)-\left(\frac{1}{6}x+1\right)=\left(\frac{1}{3}x+4\right)-\left(\frac{1}{3}x-3\right)\)
=> \(\frac{3}{4}x+3-\frac{2}{3}x+4-\frac{1}{6}x-1=\frac{1}{3}x+4-\frac{1}{3}x+3\)
=> \(-\frac{1}{12}x+6=7\)
=> \(-\frac{1}{12}x=1\)
=> x = -12
a) (x + 2)2 = 81
=> (x + 2)2 = 92
=> \(\orbr{\begin{cases}x+2=-9\\x+2=9\end{cases}}\Rightarrow\orbr{\begin{cases}x=-11\\x=7\end{cases}}\)
b) 5x + 5x + 2 = 650
=> 5x + 5x . 52 = 650
=> 5x + 5x . 25 = 650
=> 5x (25 + 1) = 650
=> 5x . 26 = 650
=> 5x = 650 : 26
=> 5x = 25
=> 5x = 52
=> x = 2
d) (2x - 1)2 - 5 = 20
=> (2x - 1)2 = 25
=> (2x - 1)2 = 52
=> \(\orbr{\begin{cases}2x-1=5\\2x-1=-5\end{cases}\Rightarrow\orbr{\begin{cases}2x=6\\2x=-4\end{cases}\Rightarrow}\orbr{\begin{cases}x=3\\x=-2\end{cases}}}\)
g) (x - 1)3 = (x - 1)
=> (x - 1)3 - (x - 1) = 0
=> (x - 1) .[(x - 1)2 - 1] = 0
=> \(\orbr{\begin{cases}x-1=0\\\left(x-1\right)^2-1=0\end{cases}\Rightarrow\orbr{\begin{cases}x=1\\\left(x-1\right)^2=1^2\end{cases}\Rightarrow}\orbr{\begin{cases}x=1\\x-1=\pm1\end{cases}}}\)
Nếu x - 1 = 1
=> x = 2
Nếu x - 1 = -1
=> x = 0
Vậy \(x\in\left\{0;1;2\right\}\)
A=2^100-2^99+2^98-2^97+..+2^2-2
=>2A=2^101-2^100+2^99-2^98+...+2^3-2^2
=>2A+A=(2^101-2^100+2^99-2^98+..+2^3-2^2)+(2^100-2^99+2^98-2^97+..+2^2-2)
=>3A=2^101-2
=>A=(2^101-2)/3
Ta có: \(1+2^2+3^2+4^2+...+99^2+100^2\) (đề đúng)
\(=1\left(2-1\right)+2\left(3-1\right)+3\left(4-1\right)+...+99\left(100-1\right)+100\left(101-1\right)\)
\(=\left(1.2+2.3+3.4+...+99.100+100.101\right)-\left(1+2+3+...+100\right)\)
\(=\frac{1.2.3+2.3.3+...+100.101.3}{3}-\frac{\left(100+1\right)\left[\left(100-1\right)\div1+1\right]}{2}\)
\(=\frac{1.2.3+2.3.\left(4-1\right)+3.4.\left(5-2\right)+...+100.101.\left(102-99\right)}{3}-5050\)
\(=\frac{1.2.3-1.2.3+2.3.4-2.3.4+3.4.5-...-99.100.101+100.101.102}{3}-5050\)
\(=\frac{100.101.102}{3}-5050\)
\(=343400-5050\)
\(=338350\)