Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có \(\frac{x}{3}=\frac{y}{4}\)\(\Rightarrow\)\(x=\frac{y}{4}.3\)tương tự với vế còn lại ta có \(z=\frac{y}{5}.6\)thay vào đề ta có:\(\frac{2.\frac{y}{4}.3+3.y+4.\frac{y}{4}.6}{3.\frac{y}{4}.3+4.y+5.\frac{y}{4}.6}\)=\(\frac{\frac{3}{2}y+3y+6.y}{\frac{9}{4}.x+4.y+\frac{15}{2}y}=\frac{\left(\frac{3}{2}+3+6\right).y}{\left(\frac{9}{4}+4+15\right).y}=\frac{\frac{21}{2}}{\frac{85}{4}}\)(rút gọn y)=\(\frac{42}{85}\)
Ta có : \(\frac{x}{3}=\frac{y}{4};\frac{y}{5}=\frac{z}{6}\Rightarrow\frac{x}{15}=\frac{y}{20}=\frac{y}{20}=\frac{z}{24}\)\(\Rightarrow\frac{x}{15}=\frac{y}{20}=\frac{z}{24}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có: \(\frac{x}{15}=\frac{y}{20}=\frac{z}{24}=\)\(\frac{2x+3y+4z}{3x+4y+5z}=\frac{30+60+96}{45+80+120}=\frac{186}{245}\)
\(\)
a)(x − 12)2 = 0
=>x − 12 = 0
=> x = 12
b) (x+12)2 = 0,25
=> x + 12 = 0,5 hoặc x + 12= -0,5
=> x = -11,5 hoặc x = -12,5
c) (2x−3)3 = -8
=> 2x - 3 = -2
=> x = 0,5
d) (3x−2)5 = −243
=> 3x - 2 = -3
=> x = -1/3
e) (7x+2)-1 = 3-2
=> \(\dfrac{1}{7x+2}=\dfrac{1}{9}\)
=> 7x + 2 = 9
=> x = 1
f) (x−1)3 = −125
=> (x−1) = −5
=> x = -4
g) (2x−1)4 = 81
=> 2x - 1 = 3
=> x = 2
h) (2x−1)6 = (2x−1)8
=> 2x -1 = 0 hoặc 2x - 1 = 1 hoặc 2x - 1 = -1
=> x = 1/2 hoặc x = 1 hoặc x = 0
a/ \(\left(x-\dfrac{1}{2}\right)^2=0\)
\(\Leftrightarrow x-\dfrac{1}{2}=0\)
\(\Leftrightarrow x=\dfrac{1}{2}\)
Vậy ...
b/ \(\left(x+\dfrac{1}{2}\right)^2=\dfrac{1}{4}\)
\(\Leftrightarrow\left[{}\begin{matrix}\left(x+\dfrac{1}{2}\right)^2=\left(\dfrac{1}{2}\right)^2\\\left(x+\dfrac{1}{2}\right)^2=\left(-\dfrac{1}{2}\right)^2\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x+\dfrac{1}{2}=\dfrac{1}{2}\\x+\dfrac{1}{2}=-\dfrac{1}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-1\end{matrix}\right.\)
Vậy ..
c/ \(\left(2x-3\right)^3=-8\)
\(\Leftrightarrow\left(2x-3\right)^3=\left(-2\right)^3\)
\(\Leftrightarrow2x-3=-2\)
\(\Leftrightarrow x=\dfrac{1}{2}\)
Vậy ...
d/ \(\left(3x-2\right)^5=-243\)
\(\left(3x-2\right)^5=\left(-3\right)^5\)
\(\Leftrightarrow3x-2=-3\)
\(\Leftrightarrow x=-\dfrac{1}{3}\)
Vậy ...
e/ \(\left(x-1\right)^3=-125\)
\(\Leftrightarrow\left(x-1\right)^3=\left(-5\right)^3\)
\(\Leftrightarrow x-1=-5\)
\(\Leftrightarrow x=-4\)
Vậy..
f/ \(\left(2x-1\right)^4=81\)
\(\Leftrightarrow\left[{}\begin{matrix}\left(2x-1\right)^4=3^4\\\left(2x-1\right)^4=\left(-3\right)^4\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-1=3\\2x-1=-3\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-1\end{matrix}\right.\)
Vậy...
g/ \(\left(2x-1\right)^6=\left(2x-1\right)^8\)
\(\Leftrightarrow\left(2x-1\right)^8-\left(2x-1\right)^6=0\)
\(\Leftrightarrow\left(2x-1\right)^6\left[\left(2x-1\right)^2-1\right]=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\left(2x-1\right)^6=0\\\left(2x-1\right)^2-1=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-1=0\\\left[{}\begin{matrix}2x-1=1\\2x-1=-1\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\\\left[{}\begin{matrix}x=1\\x=0\end{matrix}\right.\end{matrix}\right.\)
Vậy..
f(x)=9x3-1/3x+3x2-3x+1/3x2-1/9x3-3x2-9x+27+3x
= 9x3-1/9x3+3x2+1/3x2-3x2-1/3-3x-9x+3x+27
= 80/9x3+1/3x2-28/3x+27
=> x - 3/2 = 0 => x = 3/2 ( TH1 )
=> x2 + 1 = 0 ; x2 = -1
=> x thuộc rỗng
=> x = 3/2
a: \(\Leftrightarrow3^n:27^n=\dfrac{1}{9}\)
\(\Leftrightarrow\left(\dfrac{1}{9}\right)^n=\dfrac{1}{9}\)
hay n=1
b: \(\Leftrightarrow3^n\cdot3^2=3^8\)
=>n+2=8
hay n=6
c: \(\Leftrightarrow2^n\cdot\dfrac{9}{2}=9\cdot2^5\)
\(\Leftrightarrow2^n=2^6\)
hay n=6
d: \(\Leftrightarrow8^n=512\)
hay n=3
(1/2+1/3+1/4+...+1/100)/(99/1+98/2+97/3+...+1/99)
=(1/2+1/3+1/4+...+1/100)/(1+100/2+100/3+100/4+....+100/99)
=(1/2+1/3+1/4+...+1/100)/100*(1/100+1/99+1/98+...+1/4+1/3+1/2)
=1/100
chỗ 99/1+99/2+99/3+...+1/99 hình như đề bài sai đề bài đúng hình như là trên đã sửa rồi
338350
Công thức nè bạn :
\(1^2+2^2+...+n^2\)\(=\frac{n\cdot\left(n+1\right)\cdot\left(2n+1\right)}{6}\)