\(\dfrac{99}{2}\)+\(\dfrac{98}{3}\)+......+
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 3 2017

=(\(\dfrac{99}{2}+1+\dfrac{98}{3}+1+...+\dfrac{1}{100}+1\)):(\(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{101}\)) -2

=(\(\dfrac{101}{2}+\dfrac{101}{3}+...\dfrac{101}{100}\)):(\(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{101}\)) -2

=101(\(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{101}\)):(\(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{101}\))-2

=101 -2 =99

-_-

19 tháng 6 2017

\(\dfrac{100+\dfrac{99}{2}+\dfrac{98}{3}+...+\dfrac{1}{100}}{\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{101}}-2\)

\(=\dfrac{\left(\dfrac{99}{2}+1\right)+\left(\dfrac{98}{3}+1\right)+...+\left(\dfrac{1}{100}+1\right)+1}{\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{101}}-2\)

\(=\dfrac{\dfrac{101}{2}+\dfrac{101}{3}+...+\dfrac{101}{100}+\dfrac{101}{101}}{\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{101}}-2\)

\(=\dfrac{101\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{100}+\dfrac{1}{101}\right)}{\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{101}}-2\)

\(=101-2\)

\(=99\)

21 tháng 1 2019

Ta có:

\(A=\dfrac{1+\dfrac{1}{3}+\dfrac{1}{5}+...+\dfrac{1}{99}}{\dfrac{1}{1\cdot99}+\dfrac{1}{3\cdot97}+...+\dfrac{1}{97\cdot3}+\dfrac{1}{99\cdot1}}\)

\(=\dfrac{1+\dfrac{1}{3}+\dfrac{1}{5}+...+\dfrac{1}{99}}{\dfrac{\dfrac{99+1}{1\cdot99}+\dfrac{97+3}{3\cdot97}+...+\dfrac{1+99}{99\cdot1}}{100}}\)

\(=\dfrac{1+\dfrac{1}{3}+\dfrac{1}{5}+...+\dfrac{1}{99}}{\dfrac{\left(1+\dfrac{1}{99}+\dfrac{1}{97}+\dfrac{1}{3}+...+\dfrac{1}{99}+1\right)}{100}}\)

\(=\dfrac{1+\dfrac{1}{3}+\dfrac{1}{5}+...+\dfrac{1}{99}}{\dfrac{2\left(1+\dfrac{1}{3}+\dfrac{1}{5}+...+\dfrac{1}{99}\right)}{100}}=\dfrac{1}{\dfrac{2}{100}}=\dfrac{100}{2}=50\)

21 tháng 1 2019

\(B=\dfrac{\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{100}}{\dfrac{99}{1}+\dfrac{98}{2}+...+\dfrac{1}{99}}\)

\(=\dfrac{\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{100}}{1+\left(\dfrac{1}{99}+1\right)+\left(\dfrac{2}{98}+1\right)+...+\left(\dfrac{98}{2}+1\right)}\)

\(=\dfrac{\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{100}}{\dfrac{100}{100}+\dfrac{100}{99}+\dfrac{100}{98}+...+\dfrac{100}{2}}\)

\(=\dfrac{\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{100}}{100\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{100}\right)}=\dfrac{1}{100}\)

23 tháng 12 2018

Ta có công thức tổng quát

\(\dfrac{1}{n\sqrt{n+1}+\left(n+1\right)\sqrt{n}}=\dfrac{1}{\sqrt{n}.\sqrt{n+1}\left(\sqrt{n}+\sqrt{n+1}\right)}=\dfrac{\sqrt{n+1}-\sqrt{n}}{\sqrt{n}.\sqrt{n+1}\left(\sqrt{n+1}+\sqrt{n}\right)\left(\sqrt{n+1}-\sqrt{n}\right)}=\dfrac{\sqrt{n+1}-\sqrt{n}}{\sqrt{n}.\sqrt{n+1}}=\dfrac{1}{\sqrt{n}}-\dfrac{1}{\sqrt{n+1}}\)Vậy \(P=\dfrac{1}{\sqrt{2}.1+\sqrt{1}.2}+\dfrac{1}{\sqrt{3}.2+\sqrt{2}.3}+...+\dfrac{1}{\sqrt{100}.99+\sqrt{99}.100}=\dfrac{1}{\sqrt{1}}-\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{2}}-\dfrac{1}{\sqrt{3}}+...+\dfrac{1}{\sqrt{99}}-\dfrac{1}{\sqrt{100}}=\dfrac{1}{\sqrt{1}}-\dfrac{1}{\sqrt{100}}=1-\dfrac{1}{10}=\dfrac{9}{10}\)

25 tháng 10 2017

Chứng minh đẳng thức phụ:

\(\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)^2=\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}+2\left(\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ac}\right)\)

\(=\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}+2.\dfrac{a+b+c}{abc}\)

\(\Rightarrow\) Với \(a+b+c=0\). Ta có: \(\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)^2=\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}\)

\(\Leftrightarrow\sqrt{\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}}=\sqrt{\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)^2}=\left|\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right|\)với \(a+b+c=0\)

Ta có:

\(S=\sqrt{1+\dfrac{1}{1^2}+\dfrac{1}{2^2}}+\sqrt{1+\dfrac{1}{2^2}+\dfrac{1}{3^2}}+.....+\sqrt{1+\dfrac{1}{99^2}+\dfrac{1}{100^2}}\)

Áp dụng đẳng thức phụ trên:

\(\sqrt{1+\dfrac{1}{1^2}+\dfrac{1}{2^2}}=\sqrt{\dfrac{1}{1^2}+\dfrac{1}{1^2}+\dfrac{1}{\left(-2\right)^2}}=1+1-\dfrac{1}{2}\left(>0\right)\)

\(\sqrt{1+\dfrac{1}{2^2}+\dfrac{1}{3^2}}=\sqrt{\dfrac{1}{1^2}+\dfrac{1}{2^2}+\dfrac{1}{\left(-3\right)^2}}=1+\dfrac{1}{2}-\dfrac{1}{3}\left(>0\right)\)

\(\sqrt{1+\dfrac{1}{3^2}+\dfrac{1}{4^2}}=\sqrt{\dfrac{1}{1^2}+\dfrac{1}{3^2}+\dfrac{1}{\left(-4\right)^2}}=1+\dfrac{1}{3}-\dfrac{1}{4}\left(>0\right)\)
\(.................\)

\(\sqrt{1+\dfrac{1}{99^2}+\dfrac{1}{100^2}}=\sqrt{\dfrac{1}{1^2}+\dfrac{1}{99^2}+\dfrac{1}{\left(-100\right)^2}}=1+\dfrac{1}{99}-\dfrac{1}{100}\)

Cộng vế với vế các đẳng thức trên, ta có:

\(S=\sqrt{1+\dfrac{1}{1^2}+\dfrac{1}{2^2}}+\sqrt{1+\dfrac{1}{2^2}+\dfrac{1}{3^2}}+\sqrt{1+\dfrac{1}{3^2}+\dfrac{1}{4^2}}+........+\sqrt{1+\dfrac{1}{99^2}+\dfrac{1}{100^2}}\)

\(=1+1-\dfrac{1}{2}+1+\dfrac{1}{2}-\dfrac{1}{3}+1+\dfrac{1}{3}-\dfrac{1}{4}+............+1+\dfrac{1}{99}-\dfrac{1}{100}\)

\(=99+1-\dfrac{1}{100}=99+\dfrac{99}{100}=99\dfrac{99}{100}\)

25 tháng 10 2017

Chứng minh kiểu khác :v

\(\forall n\in\)N*, ta có:

\(\sqrt{1+\dfrac{1}{n^2}+\dfrac{1}{\left(n+1\right)^2}}\)

\(=\sqrt{\dfrac{n^2\left(n+1\right)^2+\left(n+1\right)^2+n^2}{n^2\left(n+1\right)^2}}\)

\(=\sqrt{\dfrac{\left[n.\left(n+1\right)\right]^2+2n\left(n+1\right)+1}{\left[n\left(n+1\right)\right]^2}}\)

\(=\sqrt{\dfrac{\left[n\left(n+1\right)+1\right]^2}{\left[n\left(n+1\right)\right]^2}}=\dfrac{n\left(n+1\right)+1}{n\left(n+1\right)}=1+\dfrac{1}{n\left(n+1\right)}=1+\dfrac{1}{n}-\dfrac{1}{n+1}\)

Việc còn lại là áp dụng vào bài thoy :v