\(1+2+2^2+2^3+2^4+....+2^{99}+2^{100}\)

2 . 

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 8 2016

Đặt \(A=1+2+2^2+2^3+...+2^{100}\)

Ta có: \(2A=2+2^2+2^3+2^4+...+2^{101}\)

\(\Rightarrow2A-A=\left(2+2^2+2^3+2^4+...+2^{101}\right)\)\(-\left(1+2+2^2+...+2^{100}\right)=\)\(2-2^{101}\)

4 tháng 8 2016

1) Đặt A = 1 + 2 + 22 + 23 + ... + 2100 + 2101

2A = 2 + 22 + 23 + 24 + ... + 2101 + 2102

2A - A = (2 + 22 + 23 + 24 + ... + 2101 + 2102) - (1 + 2 + 22 + 23 + ... + 2100 + 2101)

A = 2102 - 1

2) Lm tương tự câu a, có j thắc mắc cứ hỏi

 đặt A = (cái trên )

2A=1+2^2+...+2^101

-

A=1+2+....+2^100

------------------------------

A= 2^101 - 1 

B = 5+5^2+......+5^99

5B=5^2+5^3+....+5^100

-

B = 5+5^2+......+5^99

-----------------------------------

4B= 5^100-5

B=(5^100 - 5)/4

học tốt nha

tổng quát cho bạn luôn

A=n+n^2 + ....+ n^n

nA= n^2 + n^3 +....+n^(n+1)

A=n+n^2 + ....+ n^n

------------------------------------------

(n-1)A = n^(n+1) - n

A= (n^(n+1) - n) / (n-1)

ok

tuy nhiên một vài trường hợp(như câu B) thôi nha còn lại cũng na ná như thế

14 tháng 10 2017

1-2+2^2 các bạn nha

13 tháng 7 2018

\(a,A=\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+...+\dfrac{1}{3^{2017}}+\dfrac{1}{2^{2018}}\)

\(3A=1+\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{2016}}+\dfrac{1}{3^{2017}}\)

\(3A-A=1-\dfrac{1}{3^{2018}}\)

\(A=\dfrac{\left(1-\dfrac{1}{3^{2018}}\right)}{2}\)

\(b,B=1+5+5^2+5^3+...+5^{100}\)

\(5B=5+5^2+5^3+5^4+...+5^{100}+5^{101}\)

\(5B-B=1-5^{101}\)

\(B=\dfrac{\left(1-5^{101}\right)}{4}\)

21 tháng 12 2017

(1-2)+(3-4)+(5-6)+(7-8)+....+(99-100)-100000

=-1+(-1)+(-1)+(-1)+...+(-1)-100000      (có 100:2=50 số -1)

=50x(-1)-100000

=-50-100000

=-100050

2 tháng 3 2020

mk làm bài 2 trước nhé 

\(\frac{x+2}{2}=\frac{72}{x+2}\)

\(=>\left(x+2\right)^2=72.2=144=12^2\)

\(=>x+2=12\)

\(=>x=12-2=10\)

2 tháng 3 2020

1b) B = -1 - 2 - 3 - 4 - 5 -... - 99 - 100

B = -(1 + 2 + 3 + 4 + ... + 99 + 100)

B = -\(\frac{\left(100+1\right).100}{2}\)

B = -5050