K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 9 2016

Tính 1+ 1/1+2+ 1/1+2+3+ 1/1+2+3+4+...+1/1+2+3+...+2016

24 tháng 9 2016

\(C=1+\frac{1}{2}\left(1+2\right)+\frac{1}{3}\left(1+2+3\right)+\frac{1}{4}\left(1+2+3+4\right)+..+\frac{1}{2016}.\left(1+2+3+...+2016\right)\)

\(C=1+\frac{1}{2}.\left(1+2\right).2:2+\frac{1}{3}.\left(1+3\right).3:2+\frac{1}{4}.\left(1+4\right).4:2+...+\frac{1}{2016}.\left(1+2016\right).2016:2\)

\(C=1+3:2+4:2+5:2+...+2017:2\)

\(C=2.\frac{1}{2}+3.\frac{1}{2}+4.\frac{1}{2}+5.\frac{1}{2}+...+2017.\frac{1}{2}\)

\(C=\frac{1}{2}.\left(2+3+4+5+...+2017\right)\)

\(C=\frac{1}{2}.\left(2+2017\right).2016:2\)

\(C=\frac{1}{2}.2019.2016.\frac{1}{2}\)

\(C=2019.504=1017576\)

24 tháng 9 2016

sao lại chia 2

11 tháng 10 2016

Ta có \(\frac{1}{1+2+3+..+n}=\frac{2}{n\left(n+1\right)}\)

Xét mẫu ta có

\(1+\frac{1}{1+2}+\frac{1}{1+2+3}+...+\frac{1}{1+2+...+2016}\)

\(=2\left(\frac{1}{1\times2}+\frac{1}{2\times3}+...+\frac{1}{2015\times2016}\right)\)

\(=2\left(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2016}-\frac{1}{2017}\right)\)

\(=2\left(1-\frac{1}{2017}\right)=\frac{2\times2016}{2017}\)

Thế vào ta được

\(D=\frac{2\times2016\times2017}{2\times2016}=2017\)

12 tháng 10 2016

 = 2017

14 tháng 9 2016

\(A=\left(1+2\right).\frac{1}{2}+\left(1+2+3\right).\frac{1}{3}+...+\left(1+2+3+...+2016\right).\frac{1}{2016}\)

\(A=\left(1+2\right).2:2.\frac{1}{2}+\left(1+3\right).3:2.\frac{1}{3}+...+\left(1+2016\right).2016:2.\frac{1}{2016}\)

\(A=3:2+4:2+...+2017:2\)

\(A=3.\frac{1}{2}+4.\frac{1}{2}+...+2017.\frac{1}{2}\)

\(A=\frac{1}{2}.\left(3+4+...+2017\right)\)

\(A=\frac{1}{2}.\left(3+2017\right).2015:2\)

\(A=\frac{1}{2}.2020.2015.\frac{1}{2}\)

\(A=505.2015=1017575\)