![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(A=\left(1+2\right).\frac{1}{2}+\left(1+2+3\right).\frac{1}{3}+...+\left(1+2+3+...+2016\right).\frac{1}{2016}\)
\(A=\left(1+2\right).2:2.\frac{1}{2}+\left(1+3\right).3:2.\frac{1}{3}+...+\left(1+2016\right).2016:2.\frac{1}{2016}\)
\(A=3:2+4:2+...+2017:2\)
\(A=3.\frac{1}{2}+4.\frac{1}{2}+...+2017.\frac{1}{2}\)
\(A=\frac{1}{2}.\left(3+4+...+2017\right)\)
\(A=\frac{1}{2}.\left(3+2017\right).2015:2\)
\(A=\frac{1}{2}.2020.2015.\frac{1}{2}\)
\(A=505.2015=1017575\)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(C=1+\frac{1}{2}\left(1+2\right)+\frac{1}{3}\left(1+2+3\right)+\frac{1}{4}\left(1+2+3+4\right)+..+\frac{1}{2016}.\left(1+2+3+...+2016\right)\)
\(C=1+\frac{1}{2}.\left(1+2\right).2:2+\frac{1}{3}.\left(1+3\right).3:2+\frac{1}{4}.\left(1+4\right).4:2+...+\frac{1}{2016}.\left(1+2016\right).2016:2\)
\(C=1+3:2+4:2+5:2+...+2017:2\)
\(C=2.\frac{1}{2}+3.\frac{1}{2}+4.\frac{1}{2}+5.\frac{1}{2}+...+2017.\frac{1}{2}\)
\(C=\frac{1}{2}.\left(2+3+4+5+...+2017\right)\)
\(C=\frac{1}{2}.\left(2+2017\right).2016:2\)
\(C=\frac{1}{2}.2019.2016.\frac{1}{2}\)
\(C=2019.504=1017576\)
![](https://rs.olm.vn/images/avt/0.png?1311)
A=3/1+3/3+3/6+...+3/2033136
A=2(3/2+3/6+3/12+...+3/4066272)
A=2.3.(1/1.2+1/2.3+...+1/2016.2017)
A=6.(1-1/2+1/2-1/3+...+1/2016-1/2017)
A=6.(1-1/2017)=336/2017
Vậy A=336/2017
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\frac{1}{1+2}+\frac{1}{1+2+3}+...+\frac{1}{1+2+3+...+2016}\)
\(=\frac{1}{\left(1+2\right).2:2}+\frac{1}{\left(1+3\right).3:2}+...+\frac{1}{\left(1+2016\right).2016:2}\)
\(=\frac{2}{2.3}+\frac{2}{3.4}+...+\frac{2}{2016.2017}\)
\(=2.\left(\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2016.2017}\right)\)
\(=2.\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2016}-\frac{1}{2017}\right)\)
\(=2.\left(\frac{1}{2}-\frac{1}{2017}\right)\)
\(=2.\frac{1}{2}-2.\frac{1}{2017}=1-\frac{2}{2017}=\frac{2015}{2017}\)