\(\sqrt{x-3}+\sqrt{5-x}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 7 2019

đề là GTLN.

ĐKXĐ : \(3\le x\le5\)

Ta có : \(A^2=\left(\sqrt{x-3}+\sqrt{5-x}\right)^2=x-3+5-x+2\sqrt{\left(x-3\right)\left(5-x\right)}\)

\(A^2=2+2\sqrt{\left(x-3\right)\left(5-x\right)}\le2+\left(x-3+5-x\right)=4\)

\(\Rightarrow\)A2 max = 4 \(\Rightarrow\)A max = 2 \(\Leftrightarrow\) x = 4

2 tháng 7 2019

ĐKXĐ: \(3\le x\le5\)

Dễ thấy \(A\ge0\). Xét : \(A^2=\left(\sqrt{x-3}+\sqrt{5-x}\right)^2\)

                                            \(=x-3+2\sqrt{\left(x-3\right)\left(5-x\right)}+5-x\)

                                           \(=2+2\sqrt{\left(x-3\right)\left(5-x\right)}\)

Vì \(\sqrt{\left(x-3\right)\left(5-x\right)}\ge0\Rightarrow2\sqrt{\left(x-3\right)\left(5-x\right)}\ge0\)

Hay \(A^2\ge2+0=2\Rightarrow A\ge\sqrt{2}.\)

Vậy Giá trị nhỏ nhất của biểu thức \(A=\sqrt{2}\)Khi \(\sqrt{\left(x-3\right)\left(5-x\right)}=0\Leftrightarrow\orbr{\begin{cases}x=3\\x=5\end{cases}}\)

6 tháng 11 2019

đề bài có sai chỗ nào k bn???

6 tháng 11 2019

à k nha bn. Hương ơi giúp mk vs!!!

24 tháng 7 2018

a) ĐKXĐ:  \(x>0;x\ne9\)

\(A=\left(\frac{1}{\sqrt{x}+3}+\frac{3}{x-9}\right).\frac{\sqrt{x}-3}{\sqrt{x}}\)

\(=\left(\frac{\sqrt{x}-3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}+\frac{3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\right).\frac{\sqrt{x}-3}{\sqrt{x}}\)

\(=\frac{\sqrt{x}}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}.\frac{\sqrt{x}-3}{\sqrt{x}}\)

\(=\frac{1}{\sqrt{x}+3}\)

24 tháng 7 2018

b)  \(A=\frac{1}{5}\) \(\Rightarrow\)\(\frac{1}{\sqrt{x}+3}=\frac{1}{5}\)

\(\Rightarrow\)\(\sqrt{x}+3=5\)

\(\Leftrightarrow\)\(\sqrt{x}=2\)

\(\Leftrightarrow\)\(x=4\)(t/m ĐKXĐ)

Vậy...

28 tháng 7 2020

+) \(B=6\sqrt{x-2}+6\sqrt{5-x}\Leftrightarrow B^2=\left(6\sqrt{x-2}+6\sqrt{5-x}\right)^2\)

\(=36\left(x-2\right)+36\left(5-x\right)+72\sqrt{\left(x-2\right)\left(5-x\right)}\ge108\Rightarrow B\ge6\sqrt{3}\)

+) \(A=B+2\sqrt{5-x}\ge6\sqrt{3}\)

Vậy \(A_{min}=6\sqrt{3}\)khi x=5

28 tháng 7 2020

+) Đặt \(a=\sqrt{x-2};b=\sqrt{5-x}\)

+) Ta có: \(a^2+b^2=3\) 

+) \(\left(a^2+b^2\right)\left(6^2+8^2\right)\ge\left(6a+8b\right)^2\Leftrightarrow\left(6a+8b\right)^2\le300\Rightarrow6a+8b\le10\sqrt{3}\)

Dấu = xảy ra khi \(\frac{a}{6}=\frac{b}{8}\Leftrightarrow\frac{\sqrt{x-2}}{6}=\frac{\sqrt{5-x}}{8}\Leftrightarrow\frac{x-2}{36}=\frac{5-x}{64}\Leftrightarrow64x-128=180-36x\Leftrightarrow308=100x\)

\(\Leftrightarrow x=3.08\)

Vậy \(A_{max}=10\sqrt{3}\)khi x=3.08

NV
6 tháng 11 2019

\(A=\frac{\left(3\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}+3\right)}-\frac{14\sqrt{x}+4}{\left(\sqrt{x}+1\right)\left(\sqrt{x}+3\right)}-\frac{\left(2\sqrt{x}+3\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}+3\right)}\)

\(=\frac{3x+7\sqrt{x}-6}{\left(\sqrt{x}+1\right)\left(\sqrt{x}+3\right)}-\frac{14\sqrt{x}+4}{\left(\sqrt{x}+1\right)\left(\sqrt{x}+3\right)}-\frac{2x+5\sqrt{x}+3}{\left(\sqrt{x}+1\right)\left(\sqrt{x}+3\right)}\)

\(=\frac{x-12\sqrt{x}-13}{\left(\sqrt{x}+1\right)\left(\sqrt{x}+3\right)}=\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-13\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}+3\right)}=\frac{\sqrt{x}-13}{\sqrt{x}+3}\)

\(A=\frac{\sqrt{x}+3-16}{\sqrt{x}+3}=1-\frac{16}{\sqrt{x}+3}\ge1-\frac{16}{3}=-\frac{13}{3}\)

\(A_{min}=-\frac{13}{3}\) khi \(x=0\)

6 tháng 12 2019
https://i.imgur.com/uIbkS6G.jpg
29 tháng 6 2019

\(A=\sqrt{1-x}+\sqrt{x+1}\)

\(A^2=\left(\sqrt{1-x}\cdot1+\sqrt{x+1}\cdot1\right)^2\)

Áp dụng BĐT Bunhiacospki ta có:
\(A^2\le\left(1^2+1^2\right)\left(1-x+1+x\right)\)

\(A^2\le4\)

\(A\le2\)

\(A_{max}=2\Leftrightarrow x=0\)

E ms tìm dc MAX thôi ah

NV
29 tháng 6 2019

ĐKXĐ: ....

a/ \(A\le\sqrt{2\left(1-x+1+x\right)}=2\Rightarrow A_{max}=2\) khi \(x=0\)

\(A\ge\sqrt{1-x+1+x}=\sqrt{2}\Rightarrow A_{min}=\sqrt{2}\) khi \(\left[{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\)

b/ \(B\le\sqrt{2\left(x-2+6-x\right)}=2\sqrt{2}\Rightarrow B_{max}=2\sqrt{2}\) khi \(x=4\)

\(B\ge\sqrt{x-2+6-x}=2\Rightarrow B_{min}=2\) khi \(\left[{}\begin{matrix}x=2\\x=6\end{matrix}\right.\)

c/ \(A^2=\left(2x+3y\right)^2=\left(\sqrt{2}.\sqrt{2}x+\sqrt{3}.\sqrt{3}y\right)^2\)

\(\Rightarrow A^2\le\left(2+3\right)\left(2x^2+3y^2\right)\le5.5=25\)

\(\Rightarrow-5\le A\le5\)

\(A_{max}=5\) khi \(x=y=1\)

\(A_{min}=-5\) khi \(x=y=-1\)