Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đkxđ : \(x\ne2\)
\(A=\frac{x^2}{x-2}=\frac{x^2-4+4}{x-2}=\frac{\left(x-2\right)\left(x+2\right)}{x-2}+\frac{4}{x-2}\)
\(=x+2+\frac{4}{x-2}\)
Để \(A\in Z\Rightarrow\frac{4}{x-2}\in Z\)
\(\Rightarrow x-2\inƯ_4\)
Mà \(Ư_4=\left\{1,-1,2,-2,4,-4\right\}\)
\(\Rightarrow....\)
Xét 6 trường hợp tìm ra x nha.
Để A là số nguyên thì \(x^2⋮x-2\)(1)
\(x-2⋮x-2\)\(\Rightarrow x^2-4x+4⋮x-2\)(2)
Trừ vế (1) cho (2) thì \(4x-4⋮x-2\)(3)
\(x-2⋮x-2\Rightarrow4x-8⋮x-2\)(4)
Trừ (3) cho (4) thì \(4⋮x-2\)
Vậy x-2 thuộc Ư(4)
.............
pt <=> 3x^2-6x+4y^2 = 13
<=> (3x^2-6x+3)+4y^2 = 16
<=> 3.(x-1)^2+4y^2 = 16
<=> 3.(x-1)^2 < = 16
<=> (x-1)^2 < = 16/3
Mà (x-1)^2 > = 0
=> 0 < = (x-1)^2 < = 16/3
Mặt khác x thuộc Z nên x-1 thuộc Z => (x-1)^2 thuộc N
=> (x-1)^2 thuộc {0;1;4}
Đến đó bạn tự tìm x,y nha
Tk mk nha
Ta có : \(x^2+\dfrac{1}{x^2}=7\)
\(\Leftrightarrow x^2+\dfrac{1}{x^2}+2=9\)
\(\Leftrightarrow\left(x+\dfrac{1}{x}\right)^2=9\)
\(\Leftrightarrow x+\dfrac{1}{x}=3\left(x>0\right)\)
\(\Leftrightarrow\left(x+\dfrac{1}{x}\right)^3=27\)
\(\Leftrightarrow x^3+3x^2.\dfrac{1}{x}+3x.\dfrac{1}{x^2}+\dfrac{1}{x^3}=27\)
\(\Leftrightarrow x^3+3x+\dfrac{3}{x}+\dfrac{1}{x^3}=27\)
\(\Leftrightarrow x^3+\dfrac{1}{x^3}+3\left(x+\dfrac{1}{x}\right)=27\)
\(\Leftrightarrow x^3+\dfrac{1}{x^3}+3.3=27\)
\(\Leftrightarrow x^3+\dfrac{1}{x^3}=18\)
Lại có : \(\left(x^2+\dfrac{1}{x^2}\right)\left(x^3+\dfrac{1}{x^3}\right)\)
\(=x^5+x+\dfrac{1}{x}+\dfrac{1}{x^5}\)
\(=x^5+\dfrac{1}{x^5}+3\left(1\right)\)
Mặt khác : \(\left(x^2+\dfrac{1}{x^2}\right)\left(x^3+\dfrac{1}{x^3}\right)=7.18=126\left(2\right)\)
Từ ( 1 ) ; ( 2 ) \(\Rightarrow x^5+\dfrac{1}{x^5}+3=126\)
\(\Rightarrow x^5+\dfrac{1}{x^5}=123\in Z\)
\(\left(đpcm\right)\)
\(e ) Để \) \(M\)\(\in\)\(Z \) \(thì\) \(1 \)\(⋮\)\(x +3\)
\(\Leftrightarrow\)\(x + 3 \)\(\in\)\(Ư\)\((1)\)\(= \) { \(\pm\)\(1 \) }
\(Lập\) \(bảng :\)
\(x +3\) | \(1\) | \(- 1\) |
\(x\) | \(-2\) | \(- 4\) |
\(Vậy : Để \) \(M\)\(\in\)\(Z\) \(thì\) \(x\)\(\in\){ \(- 4 ; - 2\) }
e) Để M \(\in\)Z <=> \(\frac{1}{x+3}\in Z\)
<=> 1 \(⋮\)x + 3 <=> x + 3 \(\in\)Ư(1) = {1; -1}
Lập bảng:
x + 3 | 1 | -1 |
x | -2 | -4 |
Vậy ....
f) Ta có: M > 0
=> \(\frac{1}{x+3}\) > 0
Do 1 > 0 => x + 3 > 0
=> x > -3
Vậy để M > 0 khi x > -3 ; x \(\ne\)3 và x \(\ne\)-3/2
\(B=\frac{5x}{x+2}-\frac{3x-23}{x-2}+\frac{40}{4-x^2}\)
a) ĐKXĐ : \(x\ne\pm2\)
\(B=\frac{5x}{x+2}-\frac{3x-23}{x-2}+\frac{40}{4-x^2}\)
\(B=\frac{5x}{x+2}-\frac{3x-23}{x-2}-\frac{40}{x^2-4}\)
\(B=\frac{5x}{x+2}-\frac{3x-23}{x-2}-\frac{40}{\left(x+2\right)\left(x-2\right)}\)
\(B=\frac{5x\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}-\frac{\left(3x-23\right)\left(x+2\right)}{\left(x+2\right)\left(x-2\right)}-\frac{40}{\left(x+2\right)\left(x-2\right)}\)
\(B=\frac{5x^2-10x}{\left(x+2\right)\left(x-2\right)}-\frac{\left(3x^2-17x-46\right)}{\left(x+2\right)\left(x-2\right)}-\frac{40}{\left(x+2\right)\left(x-2\right)}\)
\(B=\frac{5x^2-10x-\left(3x^2-17x-46\right)-40}{\left(x+2\right)\left(x-2\right)}\)
\(B=\frac{5x^2-10x-3x^2+17x+46-40}{\left(x+2\right)\left(x-2\right)}\)
\(B=\frac{2x^2+7x+6}{\left(x+2\right)\left(x-2\right)}=\frac{\left(x+2\right)\left(2x+3\right)}{\left(x+2\right)\left(x-2\right)}=\frac{2x+3}{x-2}\)
b) x2 - 1 = 0 <=> x2 = 1 <=> x = ±1
Với x = 1
\(B=\frac{2\cdot1+3}{1-2}=-5\)
Với x = -1
\(B=\frac{2\cdot\left(-1\right)+3}{\left(-1\right)-2}=-\frac{1}{3}\)
a) \(3x\left(x-1\right)=x^2-2x+1\)
\(\Leftrightarrow3x\left(x-1\right)=\left(x-1\right)^2\Leftrightarrow\left(x-1\right)\left(x-1-3x\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(2x+1\right)=0\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-\dfrac{1}{2}\end{matrix}\right.\)
b) \(\Leftrightarrow x^3-7x^2+14x-8=0\)
\(\Leftrightarrow x^3-2x^2-5x^2+10x+4x-8=0\)
\(\Leftrightarrow x^2\left(x-2\right)-5x\left(x-2\right)+4\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x^2-5x+4\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x-2\right)\left(x-4\right)=0\Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\\x=4\end{matrix}\right.\)
c) \(3x^2=4x\Leftrightarrow x\left(3x-4\right)=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{4}{3}\end{matrix}\right.\)
d) \(\Leftrightarrow x^2-6x-7=0\)
\(\Leftrightarrow x^2-6x+9-16=0\)
\(\Leftrightarrow\left(x-3\right)^2-16=0\Leftrightarrow\left(x-7\right)\left(x+1\right)=0\Leftrightarrow\left[{}\begin{matrix}x=7\\x=-1\end{matrix}\right.\)