\(x\inℤ\)

\((x+7)⋮x^2+x+3\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 5 2019

Đkxđ : \(x\ne2\)

\(A=\frac{x^2}{x-2}=\frac{x^2-4+4}{x-2}=\frac{\left(x-2\right)\left(x+2\right)}{x-2}+\frac{4}{x-2}\)

\(=x+2+\frac{4}{x-2}\)

Để \(A\in Z\Rightarrow\frac{4}{x-2}\in Z\)

\(\Rightarrow x-2\inƯ_4\)

Mà \(Ư_4=\left\{1,-1,2,-2,4,-4\right\}\)

\(\Rightarrow....\)

Xét 6 trường hợp tìm ra x nha. 

25 tháng 5 2019

Để A là số nguyên thì \(x^2⋮x-2\)(1)

                               \(x-2⋮x-2\)\(\Rightarrow x^2-4x+4⋮x-2\)(2)

Trừ vế (1) cho (2) thì \(4x-4⋮x-2\)(3)

                              \(x-2⋮x-2\Rightarrow4x-8⋮x-2\)(4)

Trừ (3) cho (4) thì \(4⋮x-2\)

Vậy x-2 thuộc Ư(4)

.............

2 tháng 3 2018

pt <=> 3x^2-6x+4y^2 = 13

<=> (3x^2-6x+3)+4y^2 = 16

<=> 3.(x-1)^2+4y^2 = 16

<=> 3.(x-1)^2 < = 16

<=> (x-1)^2 < = 16/3

Mà (x-1)^2 > = 0

=> 0 < = (x-1)^2 < = 16/3

Mặt khác x thuộc Z nên x-1 thuộc Z => (x-1)^2 thuộc N

=> (x-1)^2 thuộc {0;1;4}

Đến đó bạn tự tìm x,y nha

Tk mk nha

1 tháng 10 2018

Ta có : \(x^2+\dfrac{1}{x^2}=7\)

\(\Leftrightarrow x^2+\dfrac{1}{x^2}+2=9\)

\(\Leftrightarrow\left(x+\dfrac{1}{x}\right)^2=9\)

\(\Leftrightarrow x+\dfrac{1}{x}=3\left(x>0\right)\)

\(\Leftrightarrow\left(x+\dfrac{1}{x}\right)^3=27\)

\(\Leftrightarrow x^3+3x^2.\dfrac{1}{x}+3x.\dfrac{1}{x^2}+\dfrac{1}{x^3}=27\)

\(\Leftrightarrow x^3+3x+\dfrac{3}{x}+\dfrac{1}{x^3}=27\)

\(\Leftrightarrow x^3+\dfrac{1}{x^3}+3\left(x+\dfrac{1}{x}\right)=27\)

\(\Leftrightarrow x^3+\dfrac{1}{x^3}+3.3=27\)

\(\Leftrightarrow x^3+\dfrac{1}{x^3}=18\)

Lại có : \(\left(x^2+\dfrac{1}{x^2}\right)\left(x^3+\dfrac{1}{x^3}\right)\)

\(=x^5+x+\dfrac{1}{x}+\dfrac{1}{x^5}\)

\(=x^5+\dfrac{1}{x^5}+3\left(1\right)\)

Mặt khác : \(\left(x^2+\dfrac{1}{x^2}\right)\left(x^3+\dfrac{1}{x^3}\right)=7.18=126\left(2\right)\)

Từ ( 1 ) ; ( 2 ) \(\Rightarrow x^5+\dfrac{1}{x^5}+3=126\)

\(\Rightarrow x^5+\dfrac{1}{x^5}=123\in Z\)

\(\left(đpcm\right)\)

30 tháng 12 2019

\(e ) Để \)  \(M\)\(\in\)\(Z \)  \(thì\) \(1 \)\(⋮\)\(x +3\)

\(\Leftrightarrow\)\(x + 3 \)\(\in\)\(Ư\)\((1)\)\(= \) { \(\pm\)\(1 \) }

\(Lập\)  \(bảng :\)

\(x +3\)\(1\)\(- 1\)
\(x\)\(-2\)\(- 4\)

\(Vậy : Để \)  \(M\)\(\in\)\(Z\)  \(thì\) \(x\)\(\in\)\(- 4 ; - 2\) }

30 tháng 12 2019

e) Để M \(\in\)Z <=> \(\frac{1}{x+3}\in Z\)

<=> 1 \(⋮\)x + 3 <=> x + 3 \(\in\)Ư(1) = {1; -1}

Lập bảng: 

x + 31-1
  x-2-4

Vậy ....

f) Ta có: M > 0

=> \(\frac{1}{x+3}\) > 0

Do 1 > 0 => x + 3 > 0

=> x > -3

Vậy để M > 0 khi x > -3 ; x \(\ne\)3 và x \(\ne\)-3/2

21 tháng 7 2020

\(B=\frac{5x}{x+2}-\frac{3x-23}{x-2}+\frac{40}{4-x^2}\)

a) ĐKXĐ : \(x\ne\pm2\)

\(B=\frac{5x}{x+2}-\frac{3x-23}{x-2}+\frac{40}{4-x^2}\)

\(B=\frac{5x}{x+2}-\frac{3x-23}{x-2}-\frac{40}{x^2-4}\)

\(B=\frac{5x}{x+2}-\frac{3x-23}{x-2}-\frac{40}{\left(x+2\right)\left(x-2\right)}\)

\(B=\frac{5x\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}-\frac{\left(3x-23\right)\left(x+2\right)}{\left(x+2\right)\left(x-2\right)}-\frac{40}{\left(x+2\right)\left(x-2\right)}\)

\(B=\frac{5x^2-10x}{\left(x+2\right)\left(x-2\right)}-\frac{\left(3x^2-17x-46\right)}{\left(x+2\right)\left(x-2\right)}-\frac{40}{\left(x+2\right)\left(x-2\right)}\)

\(B=\frac{5x^2-10x-\left(3x^2-17x-46\right)-40}{\left(x+2\right)\left(x-2\right)}\)

\(B=\frac{5x^2-10x-3x^2+17x+46-40}{\left(x+2\right)\left(x-2\right)}\)

\(B=\frac{2x^2+7x+6}{\left(x+2\right)\left(x-2\right)}=\frac{\left(x+2\right)\left(2x+3\right)}{\left(x+2\right)\left(x-2\right)}=\frac{2x+3}{x-2}\)

b) x2 - 1 = 0 <=> x2 = 1 <=> x = ±1

Với x = 1 

\(B=\frac{2\cdot1+3}{1-2}=-5\)

Với x = -1

\(B=\frac{2\cdot\left(-1\right)+3}{\left(-1\right)-2}=-\frac{1}{3}\)

9 tháng 12 2018

a) \(3x\left(x-1\right)=x^2-2x+1\)

\(\Leftrightarrow3x\left(x-1\right)=\left(x-1\right)^2\Leftrightarrow\left(x-1\right)\left(x-1-3x\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(2x+1\right)=0\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-\dfrac{1}{2}\end{matrix}\right.\)

b) \(\Leftrightarrow x^3-7x^2+14x-8=0\)

\(\Leftrightarrow x^3-2x^2-5x^2+10x+4x-8=0\)

\(\Leftrightarrow x^2\left(x-2\right)-5x\left(x-2\right)+4\left(x-2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x^2-5x+4\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x-2\right)\left(x-4\right)=0\Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\\x=4\end{matrix}\right.\)

c) \(3x^2=4x\Leftrightarrow x\left(3x-4\right)=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{4}{3}\end{matrix}\right.\)

d) \(\Leftrightarrow x^2-6x-7=0\)

\(\Leftrightarrow x^2-6x+9-16=0\)

\(\Leftrightarrow\left(x-3\right)^2-16=0\Leftrightarrow\left(x-7\right)\left(x+1\right)=0\Leftrightarrow\left[{}\begin{matrix}x=7\\x=-1\end{matrix}\right.\)