\(x^2+2x+1\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

QT
Quoc Tran Anh Le
Giáo viên
5 tháng 6 2018

Ta có: \(x^2+2x+1=\left(x+1\right)^2\)

Xét \(\left(x+1\right)^2=0\)

=> \(x+1=0\) -> \(x=-1\)

Vậy nghiệm đa thức \(x^2+2x+1\)là x = -1

5 tháng 6 2018

thiếu đề k bạn

14 tháng 8 2017

1. Thay x = -2 vào \(f\left(x\right)\), ta có:

\(\left(-2\right)^3+2.\left(-2\right)^2+a.\left(-2\right)+1=\)0

=> -8 + 8 - 2a + 1 = 0

=> -2a +1 = 0

=> -2a = -1

=> a = \(\frac{1}{2}\)

Vậy a = \(\frac{1}{2}\)

2. * Thay x = 1 vào \(f\left(x\right)\), ta có:

1+ 1.a + b = 1 + a + b = 0    ( 1)

* Thay x = 2 vào biểu thức \(f\left(x\right)\), ta có:

22 + 2.a + b =  4 + 2a + b =  0  ( 2)

* Lấy    (2 )   -   ( 1)  , ta có:

 ( 4 + 2a + b ) - ( 1 + a + b ) = 3  + a 

=> 3 + a = 0

=> a = -3

* 1 + a + b = 0 

=> 1 - 3 + b = 0

=> b = -1 + 3 = -2

Vậy a= -3  và b= -2

8 tháng 4 2019

a = -3

b = -2

Hok tốt

14 tháng 8 2017

1) Để đa thức f(x) có nghiệm thì:

\(x^3+2x^2+ax+1=0\)

\(f\left(-2\right)=\left(-2\right)^3+2\left(-2\right)^2+a\left(-2\right)+1=0\)

\(\Rightarrow-8+8-2a+1=0\)

\(\Rightarrow2a=1\Rightarrow a=\dfrac{1}{2}\)

Vậy a = \(\dfrac{1}{2}\).

2) Để đa thức f(x) có nghiệm thì:

\(x^2+ax+b=0\)

\(f\left(1\right)=1^2+a.1+b=0\Rightarrow a+b+1=0\)(1)

\(f\left(2\right)=2^2+a.2+b=0\Rightarrow2a+b+4=0\)

\(f\left(2\right)-f\left(1\right)=\left(2a+b+4\right)-\left(a+b+1\right)=0\)

\(\Rightarrow2a+b+4-a-b-1=0\)

\(\Rightarrow a+3=0\Rightarrow a=-3\)

Thay vào (1) ta có: -3 + b + 1 =0

\(\Rightarrow\) b - 2 = 0 \(\Rightarrow\) b = 2

Vậy a = -3; b = 2.

14 tháng 8 2017

1) Ta có: x = -2 là nghiệm của f(x)

\(\Rightarrow f\left(-2\right)=\left(-2\right)^3+2.\left(-2\right)^2+a.\left(-2\right)+1=0\)

\(\Rightarrow f\left(-2\right)=-8+8-2a+1=0\)

\(\Rightarrow-2a+1=0\)

\(\Rightarrow-2a=-1\)

\(\Rightarrow a=0,5\)

2) Ta có: x = 1 là nghiệm của f (x)

\(\Rightarrow f\left(1\right)=1^2+a.1+b=0\)

\(\Rightarrow1+a+b=0\)

Ta có: x = 2 là một nghiệm của f (x)

\(\Rightarrow f\left(2\right)=2^2+a.2+b=0\)

\(\Rightarrow4+2a+b=0\)

\(\Rightarrow1+a+b=4+2a+b\)

\(\Rightarrow1+a+b-4-2a-b=0\)

\(\Rightarrow-3-a=0\Rightarrow a=-3\)

\(\Rightarrow1-3+b=0\Rightarrow b=2\)

23 tháng 5 2018

a ) 

\(x^2-x+1=0\)

( a = 1 ; b= -1 ; c = 1 )

\(\Delta=b^2-4.ac\)

\(=\left(-1\right)^2-4.1.1\)

\(=1-4\)

\(=-3< 0\)

vì \(\Delta< 0\) nên phương trình vô nghiệm 

=> đa thức ko có nghiệm 

b ) đặc t = x (  \(t\ge0\) )

ta có : \(t^2+2t+1=0\)

( a = 1 ; b= 2 ; b' = 1 ; c =1 ) 

\(\Delta'=b'^2-ac\)

\(=1^2-1.1\)

\(=1-1=0\)

phương trình có nghiệp kép 

\(t_1=t_2=-\frac{b'}{a}=-\frac{1}{1}=-1\) ( loại )   

vì \(t_1=t_2=-1< 0\)

nên phương trình vô nghiệm 

Vay : đa thức ko có nghiệm 

24 tháng 5 2018

2/ Đặt \(f\left(x\right)=\left(2x^2-3x+5\right)+3x^2+3x-6\)

Ta có \(f\left(x\right)=\left(2x^2-3x+5\right)+3x^2+3x-6\)

=> \(f\left(x\right)=2x^2-3x+5+3x^2+3x-6\)

=> \(f\left(x\right)=5x^2-1\)

Khi \(f\left(x\right)=0\)

=> \(5x^2-1=0\)

=> \(5x^2=1\)

=> \(x^2=\frac{1}{5}\)

=> \(x=\sqrt{\frac{1}{5}}\)

Vậy f (x) có 1 nghiệm là \(x=\sqrt{\frac{1}{5}}\)

26 tháng 5 2019

Bài 1:

a)Có \(B\left(y\right)=m.\left(-1\right)-3=2\)

\(m.\left(-1\right)\) \(=2+3\)

\(m.\left(-1\right)\) \(=5\)

\(m\) \(=5:\left(-1\right)\)

\(m\) \(=-5\).

b)Có \(-1\) là nghiệm của đa thức D(x).

=>\(D\left(x\right)=\left(-2\right).\left(-1\right)^2+\left(-1\right)a-7a+3=0\)

<=> \(\left(-2\right)-a+7a+3=0\)

<=> \(\left(-2\right)-a+7a=-3\)

<=> \(-a+7a=-2-3\)

<=> \(-a+7a=-5\)

<=> \(\left(-1+7\right)a=-5\)

<=> \(6a=-5\)

<=> a= \(\frac{-5}{6}\)

26 tháng 5 2019

B2;

a)\(x^2+x+1\)

=(\(x^2+0,5x\))+(0,5x+0,25)+0,75

=x(x+0,25)+0,5(x+0,5)+0,75

=\(\left(x+0,5\right)^2\)+0,75.

\(\left(x+0,5\right)^2\ge0\)

=>\(x^2+x+1\) không có nghiệm.

b)\(x^2+2x+2\)

=\(x^2+x+x+1+1\)

=\(\left(x^2+x\right)+\left(x+1\right)+1\)

=\(x\left(x+1\right)+\left(x+1\right)\)

=\(\left(x+1\right)\left(x+1\right)+1\)

=\(\left(x+1\right)^2+1\)

\(\left(x+1\right)^2\ge0\)

=> \(x^2+2x+2\) không có nghiệm.

c)\(-x^2+2x-3\)

=\(-\left(x^2-2x+3\right)\)

=\(-\left(x^2-2.x.1+2+1\right)\)

=\(-\left[\left(x-1\right)^2+2\right]\)

=\(-\left(x-1\right)^2-2\)

\(\left(x-1\right)^2\le0\)

=> \(-x^2+2x-3\) không có nghiệm.

a) Đặt P(y)=0

⇔3y-6=0

⇔3y=6

hay y=2

Vậy: S={2}

Đặt N(x)=0

\(\Leftrightarrow\frac{1}{3}-2x=0\)

\(\Leftrightarrow2x=\frac{1}{3}\)

hay \(x=\frac{1}{3}:2=\frac{1}{3}\cdot\frac{1}{2}=\frac{1}{6}\)

Vậy: \(S=\left\{\frac{1}{6}\right\}\)

Đặt D(z)=0

\(z^3-27=0\)

\(\Leftrightarrow z^3=27\)

hay z=3

Vậy: S={3}

Đặt M(x)=0

\(x^2-4=0\)

\(\Leftrightarrow x^2=4\)

\(\Leftrightarrow x=\pm2\)

Vậy: S={2;-2}

Đặt C(y)=0

\(\Leftrightarrow\sqrt{2}y+3=0\)

\(\Leftrightarrow\sqrt{2}y=-3\)

\(\Leftrightarrow y=\frac{-3}{\sqrt{2}}=\frac{-3\sqrt{2}}{2}\)

Vậy: \(S=\left\{\frac{-3\sqrt{2}}{2}\right\}\)

b) Ta có: \(x^4\ge0\forall x\)

\(\Rightarrow x^4+1\ge1>0\forall x\)

hay Q(x) vô nghiệm(đpcm)

18 tháng 5 2018

Bài 1:

Thay x=1 vào đa thức F(x) ta được:

F(1) = 14+2.13-2.12-6.1+5 = 0

=> x=1 là nghiệm của đa thức F(x)

Tương tự ta thế -1; 2; -2 vào đa thức F(x)

Vậy x=1 là nghiệm của đa thức F(x)

26 tháng 3 2018

Áp dụng hằng đẳng thức đáng nhớ ta có :

x4+2x2+1=(x2+1)2

Ta có : (x2+1)2 luôn luôn lớn hơn hoặc bằng 0

=>PT trên vô nghiệm

26 tháng 3 2018

Theo hằng đẳng thức đáng nhớ , ta có :

\(x^4+2x^2+1=\left(x^2+1\right)^2\)

Vì \(x^2\ge0\).Nên \(x^2+1\ge1;\Rightarrow x^2+1>0\)

\(\Rightarrow\left(x^2+1\right)^2>0\)

Vậy phương trình vô nghiệm.

13 tháng 5 2017

B

8 tháng 6 2017

(D)Đa thức x có nghiệm x=0

4 tháng 7 2019

a) \(x^2+x+1=x^2+2.\frac{1}{2}x+\frac{1}{4}+\frac{3}{4}=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\)

Vì \(\left(x+\frac{1}{2}\right)^2\ge0\)nên \(\left(x+\frac{1}{2}\right)^2+\frac{3}{4}>0\)

Vậy đa thức trên vô nghiệm

4 tháng 7 2019

b) \(x^2+2x+3=x^2+2x+1+2=\left(x+1\right)^2+2\)

Vì \(\left(x+1\right)^2\ge0\)nên \(\left(x+1\right)^2+2>0\)

Vậy đa thức trên vô nghiệm