Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^2-2x+5=x^2-2x+1+4=\left(x-1\right)^2+4\ge4\)
\(\sqrt{\left(x-1\right)^2+4}\ge2\)
\(\sqrt{x^2-2x+5}\ge2\)
a) Ta có: \(x-\sqrt{x}+1=\left(\sqrt{x}-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\left(\forall x\right)\)
=> \(A=\frac{1}{x-\sqrt{x}+1}\le\frac{1}{\frac{3}{4}}=\frac{4}{3}\left(\forall x\right)\)
Dấu "=" xảy ra khi: \(\left(\sqrt{x}-\frac{1}{2}\right)^2=0\Rightarrow x=\frac{1}{4}\)
Vậy Max(A) = 4/3 khi x = 1/4
b) \(B=\sqrt{4x-x^2+21}=\sqrt{-\left(x^2-4x+4\right)+25}\)
\(=\sqrt{25-\left(x-2\right)^2}\le\sqrt{25}=5\left(\forall x\right)\)
Dấu "=" xảy ra khi: \(\left(x-2\right)^2=0\Rightarrow x=2\)
Vậy Max(B) = 5 khi x = 2
c) \(C=1+\sqrt{-9x^2+6x}=1+\sqrt{-\left(9x^2-6x+1\right)+1}\)
\(=1+\sqrt{1-\left(3x-1\right)^2}\le1+\sqrt{1}=2\)
Dấu "=" xảy ra khi: \(\left(3x-1\right)=0\Rightarrow x=\frac{1}{3}\)
Vậy Max(C) = 2 khi x = 1/3
d) Ta có: \(D=\sqrt{x-2}+\sqrt{4-x}\)
=> \(D^2=\left(\sqrt{x-2}+\sqrt{4-x}\right)\le\left(1^2+1^2\right)\left(x-2+4-x\right)\) ( BĐT Bunhia)
\(=2.2=4\)
=> \(D\le2\left(\forall x\right)\)
Dấu "=" xảy ra khi: \(x-2=4-x\Rightarrow x=3\)
Vậy Max(D) = 2 khi x = 3
c)\(C=5+\sqrt{-4x^2-4x}\)
\(C=5+\sqrt{1-\left(4x^2+4x+1\right)}\)
\(C=5+\sqrt{1-\left(2x+1\right)^2}\)
Ta có: \(-\left(2x+1\right)^2\le0\)
\(\sqrt{1-\left(2x+1\right)^2}\le1\)
\(\sqrt{1-\left(2x+1\right)^2}+5\le6\Leftrightarrow C\le6\)
Vậy \(C_{max}=6\) khi \(2x+1=0\Leftrightarrow x=-\frac{1}{2}\)
f) \(F=\sqrt{4x^2-4x+1}+\sqrt{4x^2-12x+9}\)
\(F=\sqrt{\left(2x-1\right)^2}+\sqrt{\left(2x-3\right)^2}\)
\(F=\left|2x-1\right|+\left|3-2x\right|\ge\left|2x+1+3-2x\right|=4\)
\(F_{min}=4\) khi \(\left(2x-1\right)\left(3-2x\right)\ge0\Leftrightarrow\frac{1}{2}\le x\le\frac{3}{2}\)
Mấy còn lại tương tự =)))
2) ĐKXĐ: \(1\le x\le5\)
\(B^2=\left(\sqrt{x-1}+\sqrt{5-x}\right)^2\le\left(1^2+1^2\right)\left(x-1+5-x\right)=8\Rightarrow B\le2\sqrt{2}\)
Xảy ra đẳng thức khi và chỉ khi x = 3
1) \(A=\sqrt{17-12\sqrt{2}}=\sqrt{\left(2\sqrt{2}-3\right)^2}=3-2\sqrt{2}\)
\(B=\sqrt{4-2\sqrt{3}}+\sqrt{7-4\sqrt{3}}=\sqrt{\left(\sqrt{3}-1\right)^2}+\sqrt{\left(\sqrt{3}-2\right)^2}\)
\(=\sqrt{3}-1+2-\sqrt{3}=1\)
\(C=\sqrt{63}-\sqrt{28}-\sqrt{7}=3\sqrt{7}-2\sqrt{7}-\sqrt{7}=0\)
\(D=\frac{2}{\sqrt{3}-1}-\frac{2}{\sqrt{3}+1}=\frac{2\left(\sqrt{3}+1\right)-2\left(\sqrt{3}-1\right)}{3-1}=\frac{4}{2}=2\)
\(M=\left(\frac{1}{3-\sqrt{5}}-\frac{1}{3+\sqrt{5}}\right):\frac{5-\sqrt{5}}{\sqrt{5}-1}=\frac{3+\sqrt{5}-3+\sqrt{5}}{9-5}.\frac{\sqrt{5}-1}{\sqrt{5}\left(\sqrt{5}-1\right)}=\frac{2}{4}=\frac{1}{2}\)
Có: \(C=\frac{1}{\sqrt{x^2-4x+5}}\)
\(\Leftrightarrow C=\frac{1}{\sqrt{\left(x-2\right)^2+1}}\)\(\le1\)
Vậy Cmin=1 \(\Leftrightarrow x=2\)
Có: \(B=5-\sqrt{x^2-6x+14}\)
\(\Leftrightarrow B=5-\sqrt{\left(x-3\right)^2+5}\) \(\le5-\sqrt{5}\)
Vậy \(B_{min}=5-\sqrt{5}\Leftrightarrow x=3\)