Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
c)đặt C= \(x+4\sqrt{x}-4=\left(x+4\sqrt{x}+4\right)-8\)
=\(\left(\sqrt{x}+2\right)^2-8\)
ta thấy : \(\left(\sqrt{x}+2\right)^2\ge4\) với mọi x>=0
=> \(\left(\sqrt{x}+2\right)^2-8\ge-4\)
=> GTNN của C=-4 khi x=0
\(A=\sqrt{\left(x-3\right)-2\sqrt{x-3}+1+2}=\sqrt{\left[\left(x-3\right)-1\right]^2+2}\)
\(=\sqrt{\left(x-4\right)^2+2}\ge\sqrt{2}\)
GTNN CỦA A=CĂN 2 TẠI X=4
\(B=2.\sqrt{x^2+3x+\frac{9}{4}+\frac{11}{4}}=2.\sqrt{\left(x+\frac{3}{2}\right)^2+\frac{11}{4}}=\sqrt{4.\left(x+\frac{3}{2}\right)^2+11}\ge\sqrt{11}\)
GTNN CỦA B=CĂN 11 TẠI X=-3/2
bài 2
\(A=\sqrt{-2x^2+7}\le\sqrt{7}\)
GTLN CỦA A=CĂN 7 TẠI X=0
\(B=1+\sqrt{-\left(x^2-6x+7\right)}=1+\sqrt{-\left(x-3\right)^2+2}\)
để B lớn nhất thì \(\sqrt{-\left(x-3\right)^2+2}\) lớn nhất
mà\(\sqrt{-\left(x-3\right)^2+2}\le2\)
=> GTLN CỦA B=1+2 =3 TẠI X=3
\(C=7+\sqrt{-4\left(x^2-x\right)}=7+\sqrt{-4\left(x-\frac{1}{2}\right)^2+1}\le7+1=8\)
GTLN là 8 tại x=1/2
a,= \(\sqrt{x-4}-2=\sqrt{x}-4\)
=>\(x=2\)
vậy min b=0 <=> x=2
b =\(x-2\cdot2\sqrt{x}+4+6=\left(\sqrt{x}-2\right)^2+6\)
=>\(\left(\sqrt{x}-2\right)^2+6\ge6\)
vậy min b=6 <=> x=\(\sqrt{2}\)
c \(x-2\cdot\frac{1}{2}\sqrt{x}+\frac{1}{4}-\frac{5}{4}=\left(\sqrt{x}-\frac{1}{2}\right)^2-\frac{5}{4}\)
\(\left(\sqrt{x}-\frac{1}{2}\right)^2-\frac{5}{4}\ge\frac{5}{4}\)
vậy min = \(\frac{5}{4}\Leftrightarrow x=\sqrt{\frac{1}{2}}\)
2. \(P=x^2-x\sqrt{3}+1=\left(x^2-x\sqrt{3}+\frac{3}{4}\right)+\frac{1}{4}=\left(x-\frac{\sqrt{3}}{2}\right)^2+\frac{1}{4}\ge\frac{1}{4}\)
Dấu '=' xảy ra khi \(x=\frac{\sqrt{3}}{2}\)
Vây \(P_{min}=\frac{1}{4}\)khi \(x=\frac{\sqrt{3}}{2}\)
3. \(Y=\frac{x}{\left(x+2011\right)^2}\le\frac{x}{4x.2011}=\frac{1}{8044}\)
Dấu '=' xảy ra khi \(x=2011\)
Vây \(Y_{max}=\frac{1}{8044}\)khi \(x=2011\)
4. \(Q=\frac{1}{x-\sqrt{x}+2}=\frac{1}{\left(x-\sqrt{x}+\frac{1}{4}\right)+\frac{7}{4}}=\frac{1}{\left(\sqrt{x}-\frac{1}{2}\right)^2+\frac{7}{4}}\le\frac{4}{7}\)
Dấu '=' xảy ra khi \(x=\frac{1}{4}\)
Vậy \(Q_{max}=\frac{4}{7}\)khi \(x=\frac{1}{4}\)
\(A=x-4\sqrt{x+1}=\left[\left(x+1\right)-4\sqrt{x+1}+4\right]-5\)
\(=\left(\sqrt{x+1}-2\right)^2-5\ge-5\)
Dấu đẳng thức xảy ra \(\Leftrightarrow\sqrt{x+1}-2=0\Leftrightarrow x=3\)
Vậy A đạt giá trị nhỏ nhất bằng -5 tại x = 3
\(\Rightarrow B=\frac{t^2-2}{3}-t=\frac{t^2-3t-2}{3}=\frac{\left(t-\frac{3}{2}\right)^2-\frac{17}{4}}{3}\ge-\frac{17}{12}\)
Dấu đẳng thức xảy ra \(\Leftrightarrow t=\frac{3}{2}\Leftrightarrow\sqrt{3x+2}=\frac{3}{2}\Leftrightarrow x=\frac{1}{12}\)
Vậy B đạt giá trị nhỏ nhất bằng \(-\frac{17}{12}\) tại \(x=\frac{1}{12}\)