Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(4y-2y^2\ge0\)
\(\Leftrightarrow2y^2-4y\le0\)
\(\Leftrightarrow2y\left(y-2\right)\le0\)
Vì y > y - 2
\(\Rightarrow\hept{\begin{cases}y\ge0\\y-2\le0\end{cases}\Rightarrow}\hept{\begin{cases}y\ge0\\y\le2\end{cases}\Rightarrow0\le y\le2}\)
\(2x^2+2y^2-2xy-4x-4y+8\)
\(=x^2-2xy+y^2+x^2-4x+y^2-4y+8\)
\(=\left(x-y\right)^2+x^2-4x+4+y^2-4x+4\)
\(=\left(x-y\right)^2+\left(x-2\right)^2+\left(y-2\right)^2\ge0\)
\(\RightarrowĐPCM\)
a)\(x^2+4y^2-2x+4y+2\)
\(=\left(x^2-2x+1\right)+\left(4y^2+4y+1\right)\)
\(=\left(x-1\right)^2+\left(2y+1\right)^2\ge0\)(đúng)
b) Sửa đề
\(3y^2+x^2+2xy+2x+6y+3\)
\(=\left(x^2+y^2+2xy\right)+2y^2+2x+6y+3\)
\(=\left(x+y\right)^2+2\left(x+y\right)+1+2y^2+4y+2\)
\(=\left(x+y+1\right)^2+2\left(y+1\right)^2\ge0\) (đúng)
Mình mới lớp 7 thui, mình ko bít lớp 8, xin lỗi, tha lỗi cho mình nha.
\(a.\) Ta có: \(B=\frac{3y^3-7y^2+5y-1}{2y^3-y^2-4y+3}=\frac{3y^3-\left(6y^2+y^2\right)+\left(2y+3y\right)-1}{2y^3+\left(3y^2-4y^2\right)-\left(6y-2y\right)+3}\)
\(B=\frac{3y^3-y^2-6y^2+2y+3y-1}{2y^2+3y^2-4y^2-6y+2y+3}=\frac{y^2\left(3y-1\right)-2y\left(3y-1\right)+\left(3y-1\right)}{y^2\left(2+3\right)-2y\left(2y+3\right)+\left(2y+3\right)}\)
\(B=\frac{\left(3y-1\right)\left(y-1\right)^2}{\left(2y+3\right)\left(y-1\right)^2}=\frac{3y-1}{2y+3}\)
\(b.\)Ta có: \(\frac{2B}{2y+3}=\frac{2.\frac{3y-1}{2y+3}}{2y+3}=\frac{\frac{2.\left(3y-1\right)}{2y+3}}{2y+3}=\frac{2.\left(3y-1\right)}{\left(2y+3\right)^2}\in Z\)
\(\Rightarrow\)\(2y+3\inƯ\left(2\right)\)mà \(Ư\left(2\right)=\left\{-2;-1;1;2\right\}\)
Vì \(2y+3\)là số nguyên lẻ \(\Rightarrow\)\(2y+3=-1\) hoặc \(2y+3=1\)
\(2y=\left(-1\right)-3=-4\) \(2y=1-3=-2\)
\(y=\left(-4\right)\div2=-2\) \(y=\left(-2\right)\div2=-1\)
Vậy để \(\frac{2B}{2y+3}\in Z\) thì \(y=-2\) hoặc \(y=-1\)
\(c.\)Để \(B\ge1\)\(\Rightarrow\)\(B-1\ge0\) hay \(\frac{3y-1}{2y+3}-1\ge0\)\(\Rightarrow\)\(\frac{y-4}{2y+3}\ge0\)
* Trường hợp 1: \(y-4\ge0\) và \(2y+3>0\)
\(\Rightarrow\) \(y\ge4\) \(\Rightarrow\) \(2y\)\(>-3\)
* \(\Rightarrow\)\(y\)\(>-\frac{3}{2}\)
Vậy \(y\ge4\)
* Trường hợp 2: \(y-4\)\(\le\)\(0\) và \(2y+3\) \(< 0\)
\(\Rightarrow\)\(y\le4\) \(\Rightarrow\)\(2y< 3\)
\(\Rightarrow\)\(y< \frac{3}{2}\)
Vậy \(y\le4\)
https://olm.vn/hoi-dap/detail/108858274535.html
Bài tương tự gưi link ib
\(\hept{\begin{cases}\left(x+2y\right)\left(x^2-2xy+4y^2\right)=0\\\left(x-2y\right)\left(x^2+2xy+4y^2\right)=16\end{cases}}\)
<=> \(\hept{\begin{cases}x^3+8y^3=0\left(1\right)\\x^3-8y^3=16\left(2\right)\end{cases}}\)
Lấy (1) + (2) theo vế
=> 2x3 = 16
=> x3 = 8 = 23
=> x = 2
Thế x = 2 vào (1)
=> 23 + 8y3 = 0
=> 8 + 8y3 = 0
=> 8y3 = -8
=> y3 = -1 = (-1)3
=> y = -1
Vậy \(\hept{\begin{cases}x=2\\y=-1\end{cases}}\)
Lời giải:
\(4y-2y^2\geq 0\)
\(\Leftrightarrow 2y(2-y)\geq 0\)
\(\Leftrightarrow y(2-y)\geq 0\)
\(\Leftrightarrow \left\{\begin{matrix} y\geq 0\\ 2-y\geq 0\end{matrix}\right.\) hoặc \(\Leftrightarrow \left\{\begin{matrix} y\leq 0\\ 2-y\leq 0\end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix} y\geq 0\\ y\leq 2\end{matrix}\right.\) hoặc \(\left\{\begin{matrix} y\leq 0\\ y\geq 2\end{matrix}\right.\) (vô lý)
Vậy \(\left\{\begin{matrix} y\geq 0\\ y\leq 2\end{matrix}\right.\)