Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a; y \(\times\) 9,1 + y \(\times\) 9,1 = 26,4
y \(\times\) (9,1 + 9,1) = 26,4
y \(\times\) 18,2 = 26,4
y = 26,4 : 18,2
y = 2
b; y \(\times\) 9,9 + y : 10 = 12,5
y \(\times\) 9,9 + y \(\times\) 0,1 = 12,5
y \(\times\) (9,9 + 0,1) = 12,5
y \(\times\) 10 = 12,5
y = 12,5 : 10
y = 1,25
A) x/y-3/8=1 x/y-3/8=1/2 B)4/9:x/y=1 4/9:x/y=2/3
x/y=1+3/8 x/y=1/2+3/8 x/y=4/9:1 x/y=4/9:2/3
x/y=8/8+3/8 x/y=4/8+3/8 x/y=4/9 x/y=2/3
x/y=11/8 x/y=7/8
\(y\cdot15,5-y\cdot5,5,=120\)
\(y\cdot(15,5-5,5)=120\)
\(y\cdot10=120\)
\(y=120\div10\)
\(y=12\)
y * 15,5 - y * 5,5 =120
y * [15,5 -5,5] =120
y * 10 = 120
y= 120 : 10
y = 12
hok tốt nha
a) Ta có: 3x = 2y => \(\frac{x}{2}=\frac{y}{3}\) => \(\frac{x}{10}=\frac{y}{15}\)
7y = 5z => \(\frac{y}{5}=\frac{z}{7}\) => \(\frac{y}{15}=\frac{z}{21}\)
=> \(\frac{x}{10}=\frac{y}{15}=\frac{z}{21}\)
Áp dụng t/c của dãy tỉ số bằng nhau, ta có:
\(\frac{x}{10}=\frac{y}{15}=\frac{z}{21}=\frac{x-y+z}{10-15+21}=\frac{32}{16}=2\)
=> \(\hept{\begin{cases}\frac{x}{10}=2\\\frac{y}{15}=2\\\frac{z}{21}=2\end{cases}}\) => \(\hept{\begin{cases}x=2.10=20\\y=2.15=30\\z=2.21=42\end{cases}}\)
Vậy ...
b) Tương tự câu trên
c) Ta có: \(\frac{2x}{3}=\frac{3y}{4}=\frac{4z}{5}\) => \(\frac{x}{\frac{3}{2}}=\frac{y}{\frac{4}{3}}=\frac{z}{\frac{5}{4}}\)
Áp dụng t/c của dãy tỉ số bằng nhau, ta có:
\(\frac{x}{\frac{3}{2}}=\frac{y}{\frac{4}{3}}=\frac{z}{\frac{5}{4}}=\frac{x+y+z}{\frac{3}{2}+\frac{4}{3}+\frac{5}{4}}=\frac{49}{\frac{49}{12}}=12\)
=> \(\hept{\begin{cases}\frac{x}{\frac{3}{2}}=12\\\frac{y}{\frac{4}{3}}=12\\\frac{z}{\frac{5}{4}}=12\end{cases}}\) => \(\hept{\begin{cases}x=12\cdot\frac{3}{2}=18\\y=12\cdot\frac{4}{3}=16\\z=12\cdot\frac{5}{4}=15\end{cases}}\)
Vậy ....
d) HD : Ta có: \(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\) => \(\frac{2x-2}{4}=\frac{3y-6}{9}=\frac{z-3}{4}\)
(Sau đó áp dụng t/c của dãy tỉ số bằng nhau rồi làm tương tự như trên)
e) HD: Đặt \(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}=k\) => x = 2k; y = 3k; z = 5k (*)
Thay x = 2k; y = 3k ; z = 5k vào xyz = 810 => tìm k => thay k ngược lại vào (*)
Nếu ko hiểu cứ hỏi t
b,Sửa đề : \(\frac{x}{3}=\frac{y}{4};\frac{y}{2}=\frac{z}{5}\)\(2x-3y+z=6\)
Ta có : \(\frac{x}{3}=\frac{y}{4}\Leftrightarrow\frac{x}{6}=\frac{y}{8}\)(*)
\(\frac{y}{2}=\frac{z}{5}\Leftrightarrow\frac{y}{8}=\frac{z}{20}\)(**)
Từ (*);(**) \(\Rightarrow\frac{x}{6}=\frac{y}{8}=\frac{z}{20}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{6}=\frac{y}{8}=\frac{z}{20}=\frac{2x-3y+z}{2.6-3.8+20}=\frac{49}{8}\)
\(x=36,75;y=49;z=122,5\)
Ta có : \(\frac{x}{4}=\frac{y}{7}\)
\(\Rightarrow\frac{x^2}{16}=\frac{y^2}{49}=\frac{3x^2}{48}=\frac{4y^2}{196}=\frac{3x^2-4y^2}{48-196}=\frac{100}{-148}=-\frac{25}{37}\)
Thay vào là ra nhé !:D
Cái chỗ Nguyễn Quang Trung đúng ròi
\(\Rightarrow\hept{\begin{cases}\frac{x}{4}=-\frac{25}{37}\\\frac{y}{7}=-\frac{25}{37}\end{cases}}\Rightarrow\hept{\begin{cases}x=-\frac{100}{37}\\y=-\frac{175}{37}\end{cases}}\)
702:[41-(2*y-5)] = 120
=> 41 - (2*y-5) = 702 : 120 = 5.85
=> 2*y -5 = 41-5.85 =35.15
=> 2*y = 35.15+5 = 40.15
=> y = 40.15:2 = 20.075
=> y = 20.075
b) xy + x - y = 4
<=> ( xy + x ) - ( y + 1 ) = 3
<=> x(y + 1 ) - ( y + 1 ) = 3
<=> ( y + 1 ) ( x - 1 ) = 3
Theo bài ra cần tìm các số nguyên dương x,y => Xét các trường hợp y + 1 nguyên dương và x - 1 nguyên dương
Mà 3 = 1 x 3 => Chỉ cs thể xảy ra 2 th :
* TH1 : y + 1 = 1 ; x -1 = 3 => y = 0 , x = 4 ( loại vì y = 0 )
* TH2 : y + 1 = 3 ; x -1 = 1 => y = 2 ; x = 2 ( T/m )
Vậy x = y = 2
c) xy + 12 = x + y
Ta có :
xy + 12 = x + y
xy - x - y = 12
x.( y -1 ) - y = 12
[ x.(y -1 ) - y ] + 1 = 12 + 1
. ( y - 1 ) - ( y -1 ) = 13
( x - 1 ) . ( y - 1 ) = 13
=> x - 1 và y - 1 thuộc Ư( 13)
Mà Ư(13 ) = { -13 ; -1 ; 1 ; 13 }
Ta có bảng :\
x -1 | x | y-1 | y |
-13 | -12 | -1 | 0 |
-1 | 0 | -13 | -12 |
1 | 2 | 13 | 14 |
13 | 14 | 1 | 2 |
\(a,5\frac{1}{4}+3,25-50\%+y=15,25\)
\(\Leftrightarrow5,25+3,25-\frac{50}{100}+y=15,25\)
\(\Leftrightarrow5,25+3,25-0,5+y=15,25\)
\(\Leftrightarrow8+y=15,25\)
\(\Leftrightarrow y=15,25-8=7,25\)
\(b,(y-3):2=2010\)
\(\Leftrightarrow y-3=4020\)
\(\Leftrightarrow y=4023\)
.B,
Chọn B