\(\left(y+\dfrac{3}{4}\right)+\left(y+\dfrac{3}{28}\right)+\left(y+\dfrac{3}...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Phần nào không hiểu bạn có thể nhắn hỏi mình nhe

Ta có : mẫu số 1 : 4 . 1

mẫu số hai : 4.7

... mẫu số thứ 96 = 100.103 = 10300

=> Số số hạng y là 100

Ta có :

\((y+..+y) + (\frac{3}{1.4} + \frac{3}{4.7} + ...+ \frac{3}{100.103})\)

\(= ( y+...+y) + [1. (\frac{1}{1.4} + \frac{1}{4.7} + ..+ \frac{1}{100.103})]\)

\(= (y+...y) + [1.(\frac{1}{1} - \frac{1}{4} + \frac{1}{4} - \frac{1}{7} + ...+ \frac{1}{100} - \frac{1}{103}) ]\)

\(= (y+...+y) + (1 - \frac{1}{103})\)

\(= (y+...+y) + \frac{102}{103}\)

\(=> (y+...+y) = \frac{308}{103} - \frac{102}{103} = \frac{206}{103}\)

\(=> y = \frac{206}{103} : 100 = \frac{206}{10300} = \frac{103}{5150}\) ( Chia 100 vì có 100 số hạng y)

Vậy \(y = \frac{103}{5150}\)

\(y+30\%y=-1,3\\ 130\%y=-1,3\\ \Rightarrow y=\dfrac{-1,3}{130\%}=-1\)

\(x:\dfrac{4}{28}=\dfrac{13}{-19}+\dfrac{8}{25}\\ 7x=-\dfrac{173}{475}\\ x=-\dfrac{\dfrac{173}{475}}{7}=-\dfrac{173}{3325}\)

Bài 1: 

a: \(\Leftrightarrow\left|x+\dfrac{4}{15}\right|=-2.15+3.75=\dfrac{8}{5}\)

=>x+4/15=8/5 hoặc x+4/15=-8/5

=>x=4/3 hoặc x=-28/15

b: \(\Leftrightarrow\left[{}\begin{matrix}\dfrac{5}{3}x=-\dfrac{1}{6}\\\dfrac{5}{3}x=\dfrac{1}{6}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-1}{6}:\dfrac{5}{3}=\dfrac{-3}{30}=\dfrac{-1}{10}\\x=\dfrac{1}{10}\end{matrix}\right.\)

c: \(\Leftrightarrow\left|x-1\right|-1=1\)

=>|x-1|=2

=>x-1=2 hoặc x-1=-2

=>x=3 hoặc x=-1

Bài 2: 

b: \(\Leftrightarrow\left\{{}\begin{matrix}x-y=0\\y+\dfrac{9}{25}=0\end{matrix}\right.\Leftrightarrow x=y=-\dfrac{9}{25}\)

Bài 3: 

a: \(A=\left|x+\dfrac{15}{19}\right|-1>=-1\)

Dấu '=' xảy ra khi x=-15/19

b: \(\left|x-\dfrac{4}{7}\right|+\dfrac{1}{2}>=\dfrac{1}{2}\)

Dấu '=' xảy ra khi x=4/7

 

9 tháng 5 2017

a) Để phân số \(\dfrac{3}{n-2}\) là số nguyên thì n - 2 \(⋮\) 3

\(\Rightarrow\) n - 2 \(\in\) Ư(3)

\(\Rightarrow\) n - 2 \(\in\){3; -3; 1;-1}

n \(\in\){5; -1; 3; 2}

9 tháng 5 2017

c) \(\dfrac{1}{3.4}+\dfrac{1}{4.5}+\dfrac{1}{5.6}+......+\dfrac{1}{28.29}\)

\(=\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+.....+\dfrac{1}{29}-\dfrac{1}{30}\)

\(=\dfrac{1}{3}-\dfrac{1}{30}\)

\(=\dfrac{10}{30}-\dfrac{1}{30}\)

\(=\dfrac{9}{30}\)

=\(\dfrac{3}{10}\)

3 tháng 4 2019

\(\frac{27}{4}=\frac{-x}{3}=>x=-\frac{81}{4}\notinℤ\)

\(^{y^2=\frac{4}{9}=\left(\frac{2}{3}\right)^2=>y=\pm\frac{2}{3}\notinℤ}\)

\(\frac{27}{4}=\frac{\left(z+3\right)}{-4}=\left(z+3\right)=-27=\left(-3\right)^3=>z+3=-3=>z=-6\)

\(+)|t|-2=-54=>|t|=-52\)(vô lí)

\(+)|t|-2=54=>|t|=56=>t=\pm56\)

a: =>-3/2+x-7=5-1/3x+4/15

=>4/3x=413/30

hay x=413/40

b: \(\Leftrightarrow5-\dfrac{3}{2}x=-\dfrac{22}{3}\cdot\dfrac{-11}{8}=\dfrac{121}{12}\)

=>3/2x=-61/12

hay x=-61/18

c: (3x+2)2+|3x+2y|=0

=>3x+2=0 và 3x=-2y

=>x=-2/3 và -2y=-2

=>(x,y)=(-2/3;1)

14 tháng 3 2017

Ta có: \(A=\left(\dfrac{1}{3}-1\right)\left(\dfrac{1}{6}-1\right)\left(\dfrac{1}{10}-1\right)\left(\dfrac{1}{15}-1\right)\left(\dfrac{1}{21}-1\right)\left(\dfrac{1}{28}-1\right)\left(\dfrac{1}{36}-1\right)\)

\(=\dfrac{-2}{3}.\dfrac{-5}{6}.\dfrac{-9}{10}.\dfrac{-14}{15}.\dfrac{-20}{21}.\dfrac{-27}{28}.\dfrac{-35}{36}\)

\(=\dfrac{-2.\left(-5\right).3.\left(-3\right).2.\left(-7\right).\left(-4\right).5.\left(-3\right).9.5.\left(-7\right)}{3.2.3.2.5.3.5.3.7.4.7.4.9}\)

\(=\dfrac{-5}{3.4}=\dfrac{-5}{12}\)

Vậy \(A=\dfrac{-5}{12}.\)

14 tháng 3 2017

\(C=1+\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{2016}}\)

\(2C=2\left(1+\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{2016}}\right)\)

\(2C=2+1+\dfrac{1}{2}+\dfrac{1}{2^2}+....+\dfrac{1}{2^{2015}}\)

\(2C-C=\left(2+1+\dfrac{1}{2}+...+\dfrac{1}{2^{2015}}\right)-\left(1+\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{2016}}\right)\)

\(C=2-\dfrac{1}{2^{2016}}\)

-x/3=24/4=6

=>x=-18

3/y2=6

=>y2=1/2

hay \(y=\pm\dfrac{\sqrt{2}}{2}\)

\(\dfrac{\left(z+3\right)^3}{-4}=6\)

=>(z+3)3=-24

\(\Leftrightarrow z+3=-\sqrt[3]{24}\)

hay \(z=-\sqrt[3]{24}-3\)

||t|-2|/8=6

=>||t|-2|=48

=>|t|-2=48

=>t=50 hoặc t=-50

31 tháng 3 2017

a) \(4,5:\left[\left(\dfrac{9-10}{6}\right)-\dfrac{9}{5}+\dfrac{12}{5}\right]-\dfrac{1}{7}\)

\(=4,5:\left(\dfrac{-1}{6}-\dfrac{-3}{5}\right)-\dfrac{1}{7}\)

=\(4,5:\left(\dfrac{-5+18}{30}\right)-\dfrac{1}{7}\)

=\(4,5:\dfrac{13}{30}-\dfrac{1}{7}\)=\(\dfrac{135}{13}-\dfrac{1}{7}=\dfrac{932}{91}\)

b) \(\dfrac{13}{3}:\left(\dfrac{1}{4}+\dfrac{5}{4}\right)-\dfrac{20}{3}\)

=\(\dfrac{13}{3}.\dfrac{2}{3}-\dfrac{20}{3}\)=\(\dfrac{26}{9}-\dfrac{20}{3}=\dfrac{26}{9}-\dfrac{60}{9}=\dfrac{-34}{9}\)

c) \(5.\left(\dfrac{1}{1.4}+\dfrac{1}{4.7}+.....+\dfrac{1}{91.94}\right)\)

\(=5.\left[\dfrac{1}{3}\left(1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+...+\dfrac{1}{91}-\dfrac{1}{94}\right)\right]\)

\(=5.\left[\dfrac{1}{3}.\left(1-\dfrac{1}{94}\right)\right]\)

=\(5.\left(\dfrac{1}{3}.\dfrac{93}{94}\right)\)

\(=5.\dfrac{31}{94}=\dfrac{155}{94}\)

Chúc bạn học tốt hehe

2 tháng 4 2017

cảm ơn