Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Từ đầu bài suy ra:
\(\left(x+y\right)+\left(y+z\right)+\left(x+z\right)=\frac{7}{6}+\frac{1}{14}+\frac{1}{12}\)
\(\Rightarrow x+y+y+z+x+z=\frac{98}{84}+\frac{6}{84}+\frac{7}{84}\)
\(\Rightarrow2x+2y+2z=\frac{111}{84}\)
\(\Rightarrow2\left(x+y+z\right)=\frac{37}{28}\)
\(\Rightarrow x+y+z=\frac{37}{28}:2=\frac{37}{28}.\frac{1}{2}=\frac{37}{56}\)
\(\Rightarrow\hept{\begin{cases}x=\frac{37}{56}-\frac{1}{14}=\frac{33}{56}\\y=\frac{37}{56}-\frac{1}{12}=\frac{97}{168}\\z=\frac{37}{56}-\frac{7}{6}=-\frac{185}{168}\end{cases}}\)
Vậy \(x=\frac{33}{56};y=\frac{97}{168};z=-\frac{185}{168}\)
bạn nhớ thử lại xem, đúng chưa nhé :)
e, ta có \(2x=3y\Rightarrow\frac{x}{3}=\frac{y}{2}\Rightarrow\frac{x^2}{9}=\frac{y^2}{4}\)
AĐTCTSBN ta có \(\frac{x^2}{9}=\frac{y^2}{4}=\frac{x^2+y^2}{9+4}=\frac{52}{13}=4\)
\(\Rightarrow\hept{\begin{cases}x=2\cdot3=6\\y=2\cdot2=4\end{cases}}\)
a) Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{x}{7}=\frac{y}{4}=\frac{x-y}{7-4}=\frac{30}{3}=10\)
\(\Rightarrow\hept{\begin{cases}\frac{x}{7}=10\Leftrightarrow x=70\\\frac{y}{4}=10\Leftrightarrow y=40\end{cases}}\)
Ta co : x:4=y:(-7)va x-y=-14
\(\Rightarrow\frac{x}{4}=\frac{y}{-7}\) va x-y=-14
Áp dụng tính chất tỉ so bằng nhau ta có:
\(\frac{x}{4}=\frac{y}{-7}=\frac{x-y}{4-\left(-7\right)}=-\frac{14}{11}\)
hih nhu sai de mih ko chac do nhe
áp dụng tính chất dãy tỉ số bằng nhau, ta có: \(\frac{x}{4}=\frac{y}{-7}=\frac{x-y}{4-\left(-7\right)}=\frac{-14}{11}\)
\(\frac{x}{4}=\frac{-14}{11}\Rightarrow x=\frac{4\times\left(-14\right)}{11}=\frac{-56}{11}\)
\(\frac{y}{-7}=\frac{-14}{11}\Rightarrow y=\frac{\left(-7\right)\left(-14\right)}{11}=\frac{98}{11}\)
Ta có: \(\frac{x}{-3}=\frac{y}{7}\Leftrightarrow\frac{x}{6}=\frac{y}{-14}\) mà \(\frac{y}{-14}=\frac{z}{5}\)
=> \(\frac{x}{6}=\frac{y}{-14}=\frac{z}{5}\)
Áp dụng t/c dãy tỉ số bằng nhau ta có:
\(\frac{x}{6}=\frac{y}{-14}=\frac{z}{5}=\frac{2x+4y-6z}{12-56-30}=-\frac{15}{74}\)
\(\Rightarrow\hept{\begin{cases}x=-\frac{15}{74}\cdot6=-\frac{45}{37}\\y=-\frac{15}{74}\cdot\left(-14\right)=\frac{105}{37}\\z=-\frac{15}{74}\cdot-\frac{75}{74}\end{cases}}\)
Theo mình là:
a/ Theo đề ta có:
x/3=y/4 và x+y=14
Áp dụng tính chất của dãy tỉ số bằng nhau,ta có:
x/3=y/4=x+y=3+4=14/7=2
Từ x/3=2=>x=2.3=6
Từ y/4=2>y=2.4=8
Vậy x=6 và y=8.
b/
Theo đề ta có:
a/7=b/9 và 3a-2b=30
Áp dụng tính chất của dãy tỉ số bằng nhau,ta có:
a/7=b/9=3a/21=2b/18=3a-2b/21=18=30/3=10
Từ a/7=10=>a=10.7=70
Từ b/9=10=>b/10.9=90
Vậy a=70 và b=90.
c/
Theo đề ta có:
x/3=y/4=z/5 và x-y+z=20
Áp dụng tính chất của dãy tỉ số bằng nhau,ta có:
x/3=y/4=z/5=x-y+z/3-4=5=20/4=5
Từ x/3=5=>x=5.3=15
Từ y/4=5=>y=5.4=20
Từ z/5=5=>z=5.5=25
Vậy x=15,y=20 và z=25
d/
Theo đề ta có:
a/4=b/7=c/10 và 2a+3b+4c=69
Áp dụng tính chất của dãy tỉ số bằng nhau,ta có:
a/4=b/7=c/10=2a/8=3b/21=4c/40=2a+3b+4c/8+21+40=69/69=1
Từ a/4=1=>a=1.4=4
Từ b/7=1=>b=1.7=7
Từ c/10=1=>c=1.10=10
Vậy a=4,b=7 và c=10
a) x=6 y=8
b) a=70 b=90
c) x=15 y=20 z=25
d) a=4 b=7 c=10
bạn kiểm tra lại giúp mk xem câu nào sai chứ mk ko chắc đúng 100% đâu. (hơi mất tự tin sau khi nhìn điểm số ý mà)
_HT_
a,
\(\frac{x}{5}=\frac{y}{7}\Leftrightarrow\frac{y}{7}=\frac{x}{5}=\frac{y-x}{7-5}=\frac{-10}{2}=-5\)[theo tính chất của dãy tỉ số bằng nhau]
=> x = -5.5 = -25
y = -5.7 = -35
b,
\(3x=4y\Leftrightarrow\frac{3x}{1}=\frac{4y}{1}=\frac{x}{\frac{1}{3}}=\frac{y}{\frac{1}{4}}=\frac{x+y}{\frac{1}{3}+\frac{1}{4}}=-\frac{14}{\frac{7}{12}}=-24\)[theo tính chất của dãy tỉ số bằng nhau]
=> x = -24.1/3 = -8
y = -24*1/4 = -6
c,
\(\frac{4}{x}=\frac{2}{y}\Leftrightarrow\frac{8}{2x}=\frac{2}{y}=\frac{8-2}{2x-y}=\frac{6}{12}=\frac{1}{2}\)[theo tính chất của dãy tỉ số bằng nhau]
=> x = 4: 1/2 = 8
y = 2: 1/2 = 4
a, Áp dụng tc dtsbn:
\(\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{x+y}{3+4}=\dfrac{14}{7}=2\\ \Rightarrow\left\{{}\begin{matrix}x=6\\y=8\end{matrix}\right.\)
b, Áp dụng tc dstbn:
\(\dfrac{a}{7}=\dfrac{b}{9}=\dfrac{3a-2b}{7\cdot3-2\cdot9}=\dfrac{30}{3}=10\\ \Rightarrow\left\{{}\begin{matrix}a=70\\b=90\end{matrix}\right.\)
c, Gọi 3 phần cần tìm là a,b,c
Áp dụng tc dstbn:
\(\dfrac{a}{2}=\dfrac{b}{3}=\dfrac{c}{4}=\dfrac{a+b+c}{2+3+4}=\dfrac{99}{9}=11\\ \Rightarrow\left\{{}\begin{matrix}a=22\\b=33\\c=44\end{matrix}\right.\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
x/3=y/5=z/7=2x+3y-z/2.3+3.5-7=14/14=1
Do đó:
x=1.3=3
y=1.5=5
z=1.7=7
Vậy x=3; y=5 và z=7.
Bài làm
Ta có: \(\frac{x}{3}=\frac{y}{5}=\frac{z}{7}\Rightarrow\frac{2x}{6}=\frac{3y}{15}=\frac{z}{7}\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{2x}{6}=\frac{3y}{15}=\frac{z}{7}\Rightarrow\frac{2x}{6}+\frac{3y}{15}-\frac{z}{7}=\frac{14}{14}=1\)
Do đó: \(\hept{\begin{cases}\frac{x}{3}=1\\\frac{y}{5}=1\\\frac{z}{7}=1\end{cases}}\Rightarrow\hept{\begin{cases}x=3\\y=5\\z=7\end{cases}}\)
Vậy x = 3, y = 5, z = 7
# Học tốt #
\(\frac{30}{7}-14:y=-\frac{12}{7}\)
\(14:y=\frac{30}{7}-\left(-\frac{12}{7}\right)\)
\(14:y=6\)
\(y=\frac{7}{3}\)
Vậy .......