K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 9 2021

ai làm được ko

Sửa đề:x+y+z=12

\(\frac{x}{2}\)\(=\frac{y}{3}\)\(=\frac{z}{4}\)\(=\frac{x+y+z}{2+3+4}\)\(=\frac{12}{9}\)\(=\frac{4}{3}\)

\(\frac{x}{2}\)\(=\frac{4}{3}\)\(=>x=2x\frac{4}{3}\)\(=\frac{8}{3}\)

\(\frac{y}{3}\)\(=\frac{4}{3}\)\(=>y=3x\frac{4}{3}\)\(=4\)

\(...........\)

25 tháng 8 2018

a) ADTCDTSBN

có: \(\frac{x}{2}=\frac{z}{4}=\frac{x+z}{2+4}=\frac{18}{6}=3.\)

=> x/2 = 3 => x = 6

y/3 = 3 => y = 9

z/4 = 3 => z = 12

KL:...

b,c làm tương tự nha

d) ta có: \(\frac{x}{5}=\frac{y}{-6}=\frac{z}{7}=\frac{2x}{10}\)

ADTCDTSBN

có: \(\frac{2x}{10}=\frac{y}{-6}=\frac{z}{7}=\frac{2x+y-z}{10+\left(-6\right)-7}=\frac{49}{-3}\)

=>...

25 tháng 8 2018

e) ADTCDTSBN

có: \(\frac{x+1}{2}=\frac{y+2}{3}=\frac{z+3}{4}=\frac{x+1+y+2+z+3}{2+3+4}=\frac{\left(x+y+z\right)+\left(1+2+3\right)}{9}\)

\(=\frac{21+6}{9}=\frac{27}{9}=3\)

=>...

g) ta có: \(\frac{x}{4}=\frac{y}{3}=k\Rightarrow\hept{\begin{cases}x=4k\\y=3k\end{cases}}\)

mà xy = 12 => 4k.3k = 12

                          12.k2 = 12

                              k2 = 1

                        => k = 1 hoặc k = -1

=> x = 4.1 = 4

y = 3.1 = 3

x=4.(-1) = -4 

y=3.(-1) = -3

KL:...

h) ta có: \(\frac{x}{5}=\frac{y}{3}\Rightarrow\frac{x^2}{25}=\frac{y^2}{9}\)

ADTCDTSBN

có: \(\frac{x^2}{25}=\frac{y^2}{9}=\frac{x^2-y^2}{25-9}=\frac{16}{16}=1\)

=>...

31 tháng 7 2017

dùng dãy tiwr số bằng nhau í dễ thế mà cũng hỏi

31 tháng 7 2017

dễ thì làm tử đi

16 tháng 10 2020

a) Ta có : \(\frac{x}{y}=\frac{4}{9}\Rightarrow\frac{x}{4}=\frac{y}{9}\Rightarrow\frac{3x}{12}=\frac{2y}{18}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\frac{3x}{12}=\frac{2y}{18}=\frac{3x-2y}{12-18}=\frac{12}{-6}=-2\)

=> \(\hept{\begin{cases}x=\left(-2\right)\cdot4=-8\\y=\left(-2\right)\cdot9=-18\end{cases}}\)

b) Ta có : \(\frac{y}{4}=\frac{x}{-3}\Rightarrow\frac{x}{-3}=\frac{y}{4}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\frac{x}{-3}=\frac{y}{4}=\frac{x-y}{\left(-3\right)-4}=\frac{7}{-7}=-1\)

=> \(\hept{\begin{cases}x=\left(-1\right)\cdot\left(-3\right)=3\\y=\left(-1\right)\cdot4=-4\end{cases}}\)

c) Ta có : \(x=-2y\Rightarrow\frac{x}{-2}=\frac{y}{1}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\frac{x}{-2}=\frac{y}{1}=\frac{x-y}{-2-1}=\frac{-3}{-3}=1\)

=> \(\hept{\begin{cases}x=1\cdot\left(-2\right)=-2\\y=1\end{cases}}\)

d) Ta có : \(\frac{x}{2}=\frac{y}{5}=\frac{z}{7}\Rightarrow\frac{2x}{4}=\frac{y}{5}=\frac{z}{7}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\frac{2x}{4}=\frac{y}{5}=\frac{z}{7}=\frac{2x+y-z}{4+5-7}=\frac{2}{2}=1\)

=> \(\hept{\begin{cases}x=1\cdot2=2\\y=1\cdot5=5\\z=1\cdot7=7\end{cases}}\)

12 tháng 11 2018

Ta có : \(\frac{x}{2}=\frac{y}{3}=>\frac{x}{8}=\frac{y}{12}\)

             \(\frac{y}{4}=\frac{z}{5}=>\frac{y}{12}=\frac{z}{15}\)

\(=>\frac{x}{8}=\frac{y}{12}=\frac{z}{15}\)

 \(=>\frac{x^2}{8^2}=\frac{y^2}{12^2}=\frac{z^2}{15^2}\)

Áp dụng t/c của dãy tí số bằng nhau ta có:

\(\frac{x^2}{8^2}=\frac{y^2}{12^2}=\frac{z^2}{15^2}=\frac{x^2+y^2-z^2}{8^2+12^2-15^2}=\frac{12}{-17}\)

PHẦN TIẾP TỰ LÀM NHÁ 

HOK GIỎI NHA CƯNG

10 tháng 2 2016

bài 1 : a,ta có 3/x-1 =4/y-2=5/z-3 =>  x-1/3=y-2/4=z-3/5 

áp dụng .... => x-1+y-2+z-3 / 3+4+5 = x+y+z-1-2-3/3+4+5 = 12/12=1

do x-1/3 = 1 => x-1 = 3 => x= 4 ( tìm y,z tương t

 

 

24 tháng 3 2021

Bài 1: 

a) Ta có: 3/x - 1 = 4/y - 2 = 5/z - 3 => x - 1/3 = y - 2/4 = z - 3/5 áp dụng ... =>x - 1 + y - 2 + z - 3/3 + 4 + 5 = x + y + z - 1 - 2 - 3/3 + 4 + 5 = 12/12 = 1 do x - 1/3 = 1 => x - 1 = 3 => x = 4 ( tìm y, z tương tự )

21 tháng 10 2020

d) Áp dụng tính chất của dãy tỉ số bằng nhau ta có: 

\(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}=\frac{2y-4}{6}=\frac{3z-9}{12}\)

\(=\frac{x-1-2y+4+3z-9}{2-6+12}=\frac{x-2y+3z-6}{8}\)

\(=\frac{-10-6}{8}=\frac{-16}{8}=-2\)

\(\Rightarrow\hept{\begin{cases}x-1=-4\\y-2=-6\\z-3=-8\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-3\\y=-4\\z=-5\end{cases}}\)

Vậy \(x=-3\)\(y=-4\)\(z=-5\)

e) \(x\left(x+y+z\right)=-12\)\(y\left(y+z+x\right)=18\)\(z\left(z+x+y\right)=30\)

\(\Rightarrow x\left(x+y+z\right)+y\left(y+z+x\right)+z\left(z+x+y\right)=-12+18+30\)

\(\Leftrightarrow\left(x+y+z\right)^2=36\)\(\Leftrightarrow\orbr{\begin{cases}x+y+z=-6\\x+y+z=6\end{cases}}\)

TH1: Nếu \(x+y+z=-6\)\(\Rightarrow x=\frac{-12}{-6}=2\)\(y=\frac{18}{-6}=-3\)\(z=\frac{30}{-6}=-5\)

TH2: Nếu \(x+y+z=6\)\(\Rightarrow x=\frac{-12}{6}=-2\)\(y=\frac{18}{6}=3\)\(z=\frac{30}{6}=5\)

Vậy các cặp giá trị \(\left(x;y;z\right)\)thỏa mãn là \(\left(2;-3;-5\right)\)\(\left(-2;3;5\right)\)