Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: A = (x+z)(y+t) = xy+zy+xt+zt
Áp dụng BĐT Cô-si, có:
x^2 + y^2 >= 2xy
y^2 + z^2 >= 2yz
z^2 + t^2 >= 2zt
t^2 + x^2 >= 2yt
=> 2(xy+yz+zt+tx) <= 2(x^2+y^2+z^2+t^2)
=>xy+yz+zt+tx <= x^2+y^2+z^2+t^2 = 1
Vậy max A = 1 khi x^2=y^2=z^2=t^2=1/4
B = ( 2x + 2y - z )2 + ( 2y + 2z - x )2 + ( 2z + 2x - y)2
B =4x2+4y2+z2+8xy-4xz-4yz+4y2+4z2+x2+8yz-4xz-4xy+4z2+4x2+y2+8xz-4xy-4yz
B =9x2+9y2+9z2
tick cho mình nhá
cộng 3 pt ta đc:
\(\Leftrightarrow\left(x+1\right)^2+\left(y+1\right)^2+\left(z+1\right)^2=0\)
\(\Rightarrow x=y=z=-1\)
thay vào A=(-1)2000+(-1)2000+(-1)2000=3
Lời giải:
Áp dụng BĐT Cauchy cho các số không âm ta có:
\(\frac{2}{3}x^2+\frac{2}{3}y^2\geq 2.\sqrt{\frac{2}{3}x^2.\frac{2}{3}y^2}=2|\frac{2}{3}xy|\geq \frac{4}{3}xy\)
\(\frac{1}{3}x^2+\frac{4}{3}t^2\geq 2|\frac{2}{3}xt|\geq \frac{4}{3}xt\)
\(\frac{1}{3}y^2+\frac{4}{3}z^2\geq 2|\frac{2}{3}yz|\geq \frac{4}{3}yz\)
\(\frac{2}{3}z^2+\frac{2}{3}t^2\geq 2|\frac{2}{3}zt|\geq \frac{4}{3}zt\)
Cộng theo vế và rút gọn:
\(\Rightarrow x^2+y^2+2z^2+2t^2\geq \frac{4}{3}(xy+xt+yz+zt)\)
\(\Leftrightarrow 1\geq \frac{4}{3}(x+z)(y+t)\)
\(\Leftrightarrow A=(x+z)(y+t)\leq \frac{3}{4}\)
Vậy \(A_{\max}=\frac{3}{4}\)
cộng 3 vế lại cùng 1 lúc ta sẽ có (x+1)2 +(y+1)2+(z+1)2 = 0.
dấu bằng xảy ra khi cả 3 biểu thức bằng 0, suy ra x=y=z= -1
thế vào A thì A= -3