\(a,0,2:1\frac{1}{5}=\frac{2}{3}:\left(6.x+7\right)\)

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 7 2017

a)\(0,2:1\frac{1}{5}=\frac{2}{3}:\left(6.x+7\right)\)

\(\frac{2}{3}:\left(6.x+7\right)=0,2:1\frac{1}{5}\)

\(\frac{2}{3}:\left(6.x+7\right)=0,2:\frac{6}{5}\)

\(\frac{2}{3}:\left(6.x+7\right)=\frac{1}{6}\)

\(6.x+7=\frac{2}{3}:\frac{1}{6}\)

\(6.x+7=4\)

      \(6.x=4-7\)

       \(6.x=-3\)

           \(x=-3:6\)

            \(x=-0,5\)

  Vậy x=-0,5 hay \(\frac{-1}{2}\)

d)\(\frac{x}{y}=\frac{2}{3};x.y=96\)

Từ \(\frac{x}{y}=\frac{2}{3}\)suy ra \(\frac{x}{3}=\frac{y}{2}\)

 Đặt k=\(\frac{x}{3}=\frac{y}{2}\)

\(\Rightarrow x=3.k;y=2.k\)

\(x.y=96\)nên \(2k.3k=96\)

                                            \(\Rightarrow6.k^2=96\)

                                              \(\Rightarrow k^2=96:6\)

                                               \(\Rightarrow k^2=16\)

                                                 \(\Rightarrow k=4\)hoặc\(k=-4\)

+)Với \(k=4\)thì \(x=2\);\(y=3\)

+)Với \(k=-4\)thì \(x=-2\);\(y=-3\)

               Vậy \(x=2;y=3\)hoặc \(x=-2;y=-3\)

e) \(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}\)\(x.y.z=810\)

    Đặt \(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}=k\)

\(\Rightarrow x=2k;y=3k;z=5k\)

\(x.y.z=810\)nên \(2k.3k.5k=810\)

                                \(\Rightarrow30.k^3=810\)

                                 \(\Rightarrow k^3=810:30\)

                                  \(\Rightarrow k^3=27\)

                                   \(\Rightarrow k=3\)

Với \(k=3\)thì \(x=6\); \(y=9\); \(z=15\)

            Vậy \(x=6\); \(y=9\); \(z=15\)

Mk chỉ làm đc vậy thui bn à! Xin lỗi thật nhiều nha

29 tháng 7 2017

bài ở sách mô đây mi

18 tháng 6 2019

#)Giải :

a) Ta có : \(\frac{x}{3}=\frac{y}{4};\frac{y}{5}=\frac{z}{7}\Rightarrow\frac{x}{15}=\frac{y}{20};\frac{y}{20}=\frac{z}{28}\Rightarrow\frac{x}{15}=\frac{y}{20}=\frac{z}{28}\)

Áp dụng tính chất dãy tỉ số bằng nhau :

\(\frac{x}{15}=\frac{y}{20}=\frac{z}{28}=\frac{2x+3y-z}{30+60-28}=\frac{186}{62}=3\)

\(\hept{\begin{cases}\frac{x}{15}=3\\\frac{y}{20}=3\\\frac{z}{28}=3\end{cases}\Rightarrow\hept{\begin{cases}x=45\\y=60\\z=84\end{cases}}}\)

Vậy x = 45; y = 60; z = 84

b) Áp dụng tính chất dãy tỉ số bằng nhau :

\(\frac{y+z+1}{x}=\frac{x+z+2}{y}=\frac{x+y-3}{z}=\frac{\left(y+z+1\right)+\left(x+z+2\right)+\left(x+y-3\right)}{x+y+z}=\frac{2\left(x+y+z\right)}{x+y+z}=2\)

\(\Rightarrow\frac{y+z+1}{x}=\frac{x+z+2}{y}=\frac{x+y-3}{z}=\frac{1}{x+y+z}=2\)

\(\Rightarrow\hept{\begin{cases}y+z+1=2x\left(1\right)\\x+z+2=2y\left(2\right)\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}x+y-3=2z\left(3\right)\\x+y+z=\frac{1}{2}\left(4\right)\end{cases}}\)

\(\left(+\right)x+y+z=\frac{1}{2}\Rightarrow y+z=\frac{1}{2}-z\)

Thay (1) vào (+) ta được :

\(\frac{1}{2}-x+1=2x\Rightarrow\frac{3}{2}=3x\Rightarrow x=\frac{1}{2}\)

\(\left(+_2\right)x+y+z=\frac{1}{2}\Rightarrow x+z=\frac{1}{2}-y\)

Thay (2) và (+2) ta được :

\(\frac{1}{2}-y+2=2y\Rightarrow\frac{5}{2}=3y\Rightarrow y=\frac{5}{6}\)

\(\left(+_3\right)x+y+z=\frac{1}{2}+\frac{5}{6}+z=\frac{1}{2}\Rightarrow\frac{4}{3}+z=\frac{1}{2}\Rightarrow z=\frac{-5}{6}\)

Vậy \(\hept{\begin{cases}x=\frac{1}{2}\\y=\frac{5}{6}\\z=\frac{-5}{6}\end{cases}}\)

18 tháng 6 2019

\(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}=k\)

\(\Rightarrow x=2k;y=3k;z=5k\)

\(\Rightarrow xyz=2k\cdot3k\cdot5k=30k^3\)

Mà \(xyz=810\Rightarrow30k^3=810\)

\(\Rightarrow k^3=27\)

\(\Rightarrow k=3\)

Thay vào tìm x,,z.

Bài 1: Tìm x, y, z thõa mãn các điều kiện sau:\(\frac{5z-6y}{4}=\frac{6x-4z}{5}=\frac{4y-5z}{6}\) và\(3x-2y+5z=96\)Bài 2: Tìm x, y, z thão mãn:a. \(2x=3y=7z\) và  \(x+y+z-13=0\)b. \(\left(x+y\right):\left(5-z\right):\left(y+z\right):\left(7+y\right)=3:1:2:5\)c. \(\frac{x}{y+z-2}=\frac{y}{x+z+1}=\frac{z}{x+y+1}=x+y+z\)d. \(\frac{x-2003}{2}=\frac{y-2004}{6}=\frac{z-2009}{8}\) và \(x+2y-z=4009\)e. \(\frac{x^2}{9}=\frac{y^2}{25}\) và  \(x\cdot...
Đọc tiếp

Bài 1: Tìm x, y, z thõa mãn các điều kiện sau:
\(\frac{5z-6y}{4}=\frac{6x-4z}{5}=\frac{4y-5z}{6}\) và\(3x-2y+5z=96\)

Bài 2: Tìm x, y, z thão mãn:

a. \(2x=3y=7z\) và  \(x+y+z-13=0\)

b. \(\left(x+y\right):\left(5-z\right):\left(y+z\right):\left(7+y\right)=3:1:2:5\)

c. \(\frac{x}{y+z-2}=\frac{y}{x+z+1}=\frac{z}{x+y+1}=x+y+z\)

d. \(\frac{x-2003}{2}=\frac{y-2004}{6}=\frac{z-2009}{8}\) và \(x+2y-z=4009\)

e. \(\frac{x^2}{9}=\frac{y^2}{25}\) và  \(x\cdot y=15\)

f. \(\frac{x^2-y^2}{3}=\frac{y^2+x^2}{-5}=x^{10}\cdot y^{10}=1024\)

g. \(\frac{x^3}{8}=\frac{y^3}{64}=\frac{z^3}{216}\) và \(x^2+y^2+z^2=14\)

h. \(\frac{2x+1}{5}=\frac{3y-2}{7}=\frac{2x+3y-1}{6x}\)

i. \(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}\) và \(x\cdot y+y\cdot z+x\cdot z=31\)

k. \(7x=3y:5y=7z\)  và \(x\cdot y+x\cdot z-y\cdot z=4\)

 Bìa 3: Tính 

\(Cho \frac{x}{2}=\frac{y}{3}=\frac{z}{5}\)
Tính

\(a. A=\frac{5x+3y}{5y-4z}\)

\(b. B=\frac{x+2y-3z}{3y+2z-5x}\)

\(c. C=\frac{2y-3z}{x+y+z}\)

Bài 4: 

\(Cho \frac{a}{b}=\frac{b}{c}=\frac{c}{a}\) với \(a+b+c\ne0\) và \(a=2011\)
Tính b và 3b-4c

0
5 tháng 7 2017

b. Áp dụng t/c dãy tỉ số = nhau:

\(\frac{x}{2}=\frac{y}{5}=\frac{x-y}{2-5}=-\frac{7}{3}\)

\(\Rightarrow\frac{x}{2}=-\frac{7}{3}\Leftrightarrow x=-\frac{7}{3}.2=-\frac{14}{3}\)

\(\Rightarrow\frac{y}{5}=-\frac{7}{3}\Leftrightarrow y=-\frac{7}{3}.5=-\frac{35}{3}\)

Vậy \(\hept{\begin{cases}x=-\frac{14}{3}\\y=-\frac{35}{3}\end{cases}}\)

c, Đặt \(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=k\Rightarrow x=2k;y=3k;z=4k\)

Ta có: \(xyz=192\Leftrightarrow2k.3k.4k=192\)

                             \(\Leftrightarrow24k^3=192\)

                             \(\Leftrightarrow k^3=8\)

                             \(\Leftrightarrow k=2\)                          

\(\Rightarrow x=2.2=4\)  

    \(y=2.3=6\)

   \(z=2.4=8\)

e, Ta có: \(x=\frac{y}{2}=\frac{z}{3}=\frac{2x}{2}=\frac{3z}{9}\)

Áp dụng t/c dãy tỉ số = nhau:

\(\frac{2x}{2}=\frac{y}{2}=\frac{3z}{9}=\frac{2x-y+3z}{2-2+9}=\frac{10}{9}\)

\(\Rightarrow x=\frac{10}{9}\)

\(y=\frac{10}{9}.2=\frac{20}{9}\)

\(z=\frac{10}{9}.3=\frac{10}{3}\)

5 tháng 7 2017

b,\(\frac{x}{2}=\frac{y}{5}=\frac{x-y}{2-5}=\frac{7}{-3}.\)

=>x= \(\frac{7}{-3}.2=-4\frac{2}{3}\)

y, \(\frac{7}{-3}.5=-11\frac{2}{3}\)

12 tháng 9 2020

a) \(\frac{2}{x-3}=\frac{5}{4}\)(ĐKXĐ : x khác 3)

=> \(2\cdot4=5\left(x-3\right)\)

=> \(8=5x-15\)

=> \(5x-15=8\)

=> \(5x=23\)=> x = 23/5 (tm)

b) \(\frac{x+1}{5}=\frac{4x-2}{3}\)

=> 3(x + 1) = 5(4x - 2)

=> 3x + 3 = 20x - 10

=> 3x + 3 - 20x + 10 = 0

=> 3x - 20x + 3 + 10 = 0

=> 3x - 20x = -13

=> -17x = -13

=> x = 13/17(tm)

2. a) Nếu đề như thế này : \(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}\) và x - 2y + 2z = 10

=> \(\frac{x}{2}=\frac{2y}{6}=\frac{2z}{10}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\frac{x}{2}=\frac{2y}{6}=\frac{2z}{10}=\frac{x-2y+2z}{2-6+10}=\frac{10}{6}=\frac{5}{3}\)

=> x = 5/3.2 = 10/3 , y = 5/3.3 = 5, z = 5/3.5 = 25/3 ( nên sửa lại đề bài này nhá)

b) Bạn tự làm

c) \(\frac{x}{y}=\frac{3}{5}\)=> \(\frac{x}{3}=\frac{y}{5}\)=> \(\frac{2x}{6}=\frac{3y}{15}\)

Áp dụng t/c dãy tỉ số bằng nhau ta có : 

\(\frac{2x}{6}=\frac{3y}{15}=\frac{2x-3y}{6-15}=\frac{12}{-11}=-\frac{12}{11}\)

=> \(x=-\frac{12}{11}\cdot3=-\frac{36}{11},y=-\frac{12}{11}\cdot5=-\frac{60}{11}\)

d) Đặt x/3 = y/4 = k

=> x = 3k, y = 4k

Theo đề bài ta có => xy = 3k.4k = 12k2

=> 48 = 12k2

=> k2  = 48 : 12 = 4

=> k = 2 hoặc k = -2

Với k = 2 thì x = 3.2 = 6 , y = 4.2 = 8

Với k = -2 thì x = 3(-2) = -6 , y = 4(-2) = -8

12 tháng 9 2020

Bài 1.

a) \(\frac{2}{x-3}=\frac{5}{4}\)( ĐK : x khác 3 )

<=> 2.4 = ( x - 3 ).5

<=> 8 = 5x - 15

<=> 8 + 15 = 5x

<=> 23 = 5x

<=> 23/5 = x ( tmđk )

b) \(\frac{x+1}{5}=\frac{4x-2}{3}\)

<=> ( x + 1 ).3 = 5( 4x - 2 )

<=> 3x + 3 = 20x - 10

<=> 3x - 20x = -10 - 3

<=> -17x = -13

<=> x = 13/17

Bài 2.

a) \(\hept{\begin{cases}\frac{x}{2}=\frac{y}{3}=\frac{z}{5}\\x-2y+2z=10\end{cases}}\Leftrightarrow\hept{\begin{cases}\frac{x}{2}=\frac{2y}{6}=\frac{2z}{10}\\x-2y+2z=10\end{cases}}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\frac{x}{2}=\frac{2y}{6}=\frac{2z}{10}=\frac{x-2y+2z}{2-6+10}=\frac{10}{6}=\frac{5}{3}\)

\(\Rightarrow\hept{\begin{cases}x=\frac{5}{3}\cdot2=\frac{10}{3}\\y=\frac{5}{3}\cdot3=5\\z=\frac{5}{3}\cdot5=\frac{25}{3}\end{cases}}\)

b) \(\hept{\begin{cases}\frac{x}{2}=\frac{y}{5}\\\frac{z}{4}=\frac{y}{6}\\x-y+z=20\end{cases}}\Leftrightarrow\hept{\begin{cases}\frac{x}{2}\times\frac{1}{6}=\frac{y}{5}\times\frac{1}{6}\\\frac{z}{4}\times\frac{1}{5}=\frac{y}{6}\times\frac{1}{5}\\x-y+z=20\end{cases}}\Leftrightarrow\hept{\begin{cases}\frac{x}{12}=\frac{y}{30}\\\frac{z}{20}=\frac{y}{30}\\x-y+z=20\end{cases}}\Rightarrow\hept{\begin{cases}\frac{x}{12}=\frac{y}{30}=\frac{z}{20}\\x-y+z=20\end{cases}}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\frac{x}{12}=\frac{y}{30}=\frac{z}{20}=\frac{x-y+z}{12-30+20}=\frac{20}{2}=10\)

\(\Rightarrow\hept{\begin{cases}x=10\cdot12=120\\y=10\cdot30=300\\z=10\cdot20=200\end{cases}}\)

c) \(\hept{\begin{cases}\frac{x}{y}=\frac{3}{5}\\2x-3y=12\end{cases}}\Leftrightarrow\hept{\begin{cases}\frac{x}{3}=\frac{y}{5}\\2x-3y=12\end{cases}}\Leftrightarrow\hept{\begin{cases}\frac{2x}{6}=\frac{3y}{15}\\2x-3y=12\end{cases}}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có : 

\(\frac{2x}{6}=\frac{3y}{15}=\frac{2x-3y}{6-15}=\frac{12}{-9}=-\frac{4}{3}\)

\(\Rightarrow\hept{\begin{cases}x=-\frac{4}{3}\cdot3=-4\\y=-\frac{4}{3}\cdot5=-\frac{20}{3}\end{cases}}\)

d) Đặt \(\frac{x}{3}=\frac{y}{4}=k\Rightarrow\hept{\begin{cases}x=3k\\y=4k\end{cases}}\)

xy = 48

<=> 3k.4k= 48

<=> 12k2 = 48

<=> k2 = 4

<=> k = ±2

+) Với k = 2 => \(\hept{\begin{cases}x=3\cdot2=6\\y=4\cdot2=8\end{cases}}\)

+) Với k = -2 => \(\hept{\begin{cases}x=3\cdot\left(-2\right)=-6\\y=4\cdot\left(-2\right)=-8\end{cases}}\)

14 tháng 10 2020

a) \(\left|2x+\frac{3}{4}\right|=\frac{1}{2}\)

     \(\orbr{\begin{cases}2x+\frac{3}{4}=\frac{1}{2}\\2x+\frac{3}{4}=\frac{-1}{2}\end{cases}}\) =>   \(\orbr{\begin{cases}2x=\frac{1}{2}-\frac{3}{4}\\2x=\frac{-1}{2}-\frac{3}{4}\end{cases}}\)  =>   \(\orbr{\begin{cases}2x=\frac{-1}{4}\\2x=\frac{-5}{4}\end{cases}}\) =>   \(\orbr{\begin{cases}x=\frac{-1}{8}\\x=\frac{-5}{8}\end{cases}}\)

Vậy \(x=\left\{\frac{-1}{8},\frac{-5}{8}\right\}\)

b) \(\frac{3x}{2,7}=\frac{\frac{1}{4}}{2\frac{1}{4}}\)\(\frac{3x}{2,7}=\frac{\frac{1}{4}}{\frac{9}{4}}\)

=> \(3x.\frac{9}{4}=2,7.\frac{1}{4}\)=>  \(\frac{27x}{4}=\frac{27}{40}\)

\(27x.40=27.4\)

\(1080.x=108\)

             \(x=\frac{1}{10}\)

Vậy \(x=\frac{1}{10}\)

c) \(\left|x-1\right|+4=6\)

\(\left|x-1\right|=6-4\)

\(\left|x-1\right|=2\)

\(\orbr{\begin{cases}x-1=2\\x-1=-2\end{cases}}\)=>  \(\orbr{\begin{cases}x=3\\x=-1\end{cases}}\)

Vậy \(x=\left[3,-1\right]\)

d) \(\frac{x}{3}=\frac{y}{5}=>\frac{y}{5}=\frac{x}{3}=>\frac{y-x}{5-3}=\frac{24}{2}=12\)

e) \(\left(x^2-3\right)^2=16\)

\(\left(x^2-3\right)^2=4^2\)\(=>x^2-3=4\)

\(x^2=7=>x=\sqrt{7}\)

Vậy \(x=\sqrt{7}\)

f) \(\frac{3}{4}+\frac{2}{5}x=\frac{29}{60}\)

               \(\frac{2}{5}x=\frac{29}{60}-\frac{3}{4}\) 

               \(\frac{2}{5}x=-\frac{4}{15}\)

          \(x=-\frac{4}{15}:\frac{2}{5}=-\frac{4}{15}.\frac{5}{2}=-\frac{2}{3}\)

Vậy \(x=-\frac{2}{3}\)

g) \(\left(-\frac{1}{3}\right)^3.x=\frac{1}{81}\)

\(\left(-\frac{1}{27}\right).x=\frac{1}{81}\)

\(x=\left(-\frac{1}{27}\right):\frac{1}{81}=\left(-\frac{1}{27}\right).81=-3\)

Vậy \(x=-3\)

k)\(\frac{3}{4}-\frac{2}{5}x=\frac{29}{60}\)

\(\frac{2}{5}x=\frac{3}{4}-\frac{29}{60}\)

\(\frac{2}{5}x=\frac{4}{15}\)

      \(x=\frac{2}{5}-\frac{4}{15}=>x=\frac{2}{15}\)

Vậy \(x=\frac{2}{15}\)

I) \(\frac{3}{5}x-\frac{1}{2}=-\frac{1}{7}\)

\(\frac{3}{5}x=-\frac{1}{7}+\frac{1}{2}\)

\(\frac{3}{5}x=\frac{5}{14}\)

\(x=\frac{5}{14}:\frac{3}{5}=\frac{5}{14}.\frac{5}{3}=\frac{25}{42}\)

Vậy \(x=\frac{25}{42}\)

25 tháng 12 2019

1)

a, \(\frac{x-7}{6}\) = \(\frac{2^3}{16}\)

⇒ 16 (x-7) = 6.23

⇒ 16x - 112 = 48

⇒ x = \(\frac{48+112}{16}\) = 10

Vậy: x = 10

b, (-0,75x) : 3 = \(\left(-2\frac{1}{2}\right)\) : 0,125

⇒ -0,25x = -2,5 : 0,125 =-20

⇒ x = \(\frac{-20}{-0,25}\) = 80

Vậy: x = 80

d, |2,6−x|=1,5

Hoặc 2,6−x=1,5

⇒ x = 2,6 -1,5 = 1,1

Hoặc 2,6−x=-1,5

⇒ x = 2,6 - (-1,5) = 4,1

Vậy: x ∈ {1,1; 4,1}

e, |x|=2019 và x > 0

Vì x > 0 nên x = - 2019

25 tháng 12 2019

2)

a, \(\frac{x}{4}\) = \(\frac{y}{9}\) và x - y = 90 (ko có z trong phép tính, chắc bạn nhầm lẫn)

Áp dụng tính chất dãy tỉ số bằng nhau:

\(\frac{x}{4}\) = \(\frac{y}{9}\) = \(\frac{x-y}{4-9}\) =\(\frac{90}{-5}\) = -18

+ \(\frac{x}{4}\) = -18 ⇒ x = -18 . 4 = -72

+ \(\frac{y}{9}\) = -18 ⇒ y = -18 . 9 = -162

Vậy: x = -72, y = -162

Lát mình làm tiếp nha mn

22 tháng 10 2018

Mình chỉ hướng dẫn giải thôi nhá chứ nhiều bài quá

a) Đặt \(\frac{x}{5}=\frac{y}{7}=k\Rightarrow x=5k;y=7k\)

Thay x.y=315 => 5k.7k=315 <=> 35k2=315 => k2=9 => k=3

x=5.3=15 ; y=7.3=21

b) 5x=9y<=> \(\frac{x}{9}=\frac{y}{5}\)

Theo TCDTSBN ta có : \(\frac{x}{9}=\frac{y}{5}=\frac{2x+3y}{2.9+3.5}=\frac{-33}{33}=-1\)

x/9=-1=>x=-9 ; y/5=-1=>y=-5

các bài còn lại tương tự b