Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\left(x-5\right)^2\cdot\left|y^2-81\right|=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-5=0\\y^2-81=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=5\\y=+-9\end{cases}}}\)
b) \(2x=3y\Leftrightarrow\frac{x}{3}=\frac{y}{2}\)
\(5y=2z\Leftrightarrow\frac{y}{2}=\frac{z}{5}\)
\(\Rightarrow\frac{x}{3}=\frac{y}{2}=\frac{z}{5}=\frac{3x+y-z}{9+2-5}=\frac{-360}{6}=-60\)
Tự tìm x,y,z nhé
c) \(\frac{x}{2}=\frac{y}{3}\Leftrightarrow\frac{x}{10}=\frac{y}{15}\)
\(\frac{y}{5}=\frac{z}{4}\Leftrightarrow\frac{y}{15}=\frac{z}{12}\)
(làm tương tự câu b)
d) \(\frac{x}{10}=\frac{y}{6}=\frac{z}{21}\Leftrightarrow\frac{5x}{50}=\frac{y}{6}=\frac{2z}{42}=\left(..........\right)\)
đến đây chắc dễ rồi
e) \(\frac{x}{5}=\frac{y}{4}\Leftrightarrow x=\frac{5y}{4}\)
Thay \(x=\frac{5y}{4}\)vào biểu thức x^2 - y^2 =1
(tìm ra y sau đó thay y vào \(x=\frac{5y}{4}\)để tìm x)
f)
a) Ta có:
\(\frac{x}{2}=\frac{y}{5}\Leftrightarrow\frac{x}{6}=\frac{y}{15}\)
\(\frac{y}{3}=\frac{z}{2}\Leftrightarrow\frac{y}{15}=\frac{z}{10}\)
=> \(\frac{x}{6}=\frac{y}{15}=\frac{z}{10}\)
Áp dụng t/c dãy tỉ số bằng nhau ta có:
\(\frac{x}{6}=\frac{y}{15}=\frac{z}{10}=\frac{x+y+z}{6+15+10}=-\frac{12}{31}\)
\(\Rightarrow\hept{\begin{cases}x=-\frac{72}{31}\\y=-\frac{180}{31}\\z=-\frac{120}{31}\end{cases}}\)
b) \(2x=3y=5z\Leftrightarrow\frac{x}{15}=\frac{y}{10}=\frac{z}{6}\)
Áp dụng t/c dãy tỉ số bằng nhau ta có:
\(\frac{x}{15}=\frac{y}{10}=\frac{z}{6}=\frac{x-y+z}{15-10+6}=\frac{33}{11}=3\)
=> \(\hept{\begin{cases}x=45\\y=30\\z=18\end{cases}}\)
a) \(\frac{x}{y}=\frac{3}{4}\Rightarrow\frac{x}{3}=\frac{y}{4}\Rightarrow\frac{x}{15}=\frac{y}{20}\)(1)
\(\frac{y}{z}=\frac{5}{7}\Rightarrow\frac{y}{5}=\frac{z}{7}\Rightarrow\frac{y}{20}=\frac{z}{28}\)(2)
Từ (1)(2) \(\Rightarrow\frac{x}{15}=\frac{y}{20}=\frac{z}{28}\)
đến đây tự làm tiếp đc rồi
b) \(2x=3y=5z\Rightarrow\frac{x}{15}=\frac{y}{10}=\frac{z}{6}\)
rồi đến đây cx ez rồi
\(\frac{x-2}{5}=\frac{y-4}{3}=\frac{z+5}{2}=\frac{2x-4}{10}=\frac{3y-12}{9}=\frac{z+5}{2}\)
áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{2x-4}{10}=\frac{3y-12}{9}=\frac{z+5}{2}=\frac{2x-3y+z-4+12+5}{10-9+2}=\frac{2x-3y+z+13}{10-9+2}\frac{33+13}{3}=12\)
Vậy \(\frac{x-2}{5}=12\) ;\(\frac{y-4}{3}=12\) ; ; x-2=12.5 \(y-4=12.3\)
x-2=60 \(y=36+4\)
x=58 \(y=40\)
bạn tự làm tiếp nha