Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì \(\left(x-y^2+z\right)^2\ge0\)
\(\left(y-2\right)^2\ge0\)
\(\left(z-3\right)^2\ge0\)
Mà \(\left(x-y^2+z\right)^2+\left(y-2\right)^2+\left(z-3\right)^2=0\)
\(\Rightarrow\) \(\left(x-y^2+z\right)^2=0;\text{ }\left(y-2\right)^2=0;\text{ }\left(z-3\right)^2=0\)
+\(\text{ }\left(y-2\right)^2=0\)
\(\Rightarrow\text{ }y-2=0\)
\(y=0+2\)
\(y=2\)
+ \(\left(z-3\right)^2=0\)
\(\Rightarrow z-3=0\)
\(z=0+3\)
\(z=3\)
+ \(\left(x-y^2+z\right)^2=0\)
\(\Rightarrow x-y^2+z=0\)
\(x-2^2+3=0\)
\(x-4=0-3\)
\(x-4=-3\)
\(x=-3+4\)
\(x=1\)
Vậy: \(x=1;\text{ }y=2;\text{ }z=3\)
a: \(\dfrac{-24}{-6}=\dfrac{x}{3}=\dfrac{4}{y^2}=\dfrac{z^3}{-2}\)
\(\Leftrightarrow\dfrac{x}{3}=\dfrac{4}{y^2}=\dfrac{z^3}{-2}=4\)
=>x=12; y2=1; z3=-8
=>x=12; \(y\in\left\{1;-1\right\}\); z=-2
b: \(\dfrac{12}{-6}=\dfrac{x}{5}=\dfrac{y}{-3}=\dfrac{z}{-17}=\dfrac{t}{9}\)
=>x/5=y/-3=z/-17=t/9=-2
=>x=-10; y=6; z=34; t=-18
a,(x+17).(25-x)=0
<=>x+17=0 hoặc 25-x=0
<=>x=-17 hoặc x=25
Vậy x=-17 hoặc x=25
b,5.(3-x)+2.(x-7)=-17
15-5x+2x-14=-17
1-3x=-17
3x=18
x=6
Vậy x=6.
c,(x-5).(x^2-9)=0
(x-5).(x.x-9)=0
=>x-5=0 hoặc x.x-9=0
=>x=5 hoặc x=3
Vậy x=5 hoặc x=3.
Tớ chỉ biết làm có zậy thôi có zì thì cậu tự nghĩ tiếp nhé!!!Còn đúng hay sai thì mình không biết đâu nhé!!!hihi!!!
Bài 1:
a: (x-1)(x-3)>=0
=>x-3>=0 hoặc x-1<=0
=>x>=3 hoặc x<=1
b: (x-5)(x-7)<0
=>x-5>0 và x-7<0
=>5<x<7
c: (x2-1)(x2-4)<0
=>1<x2<4
mà x là số nguyên
nên \(x\in\varnothing\)
\(\left(x-2\right)\left(x-4\right)< 0\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x-2< 0\\x-4>0\end{matrix}\right.=>4< x< 2\left(1\right)\\\left\{{}\begin{matrix}x-2>0\\x-4< 0\end{matrix}\right.=>2< x< 4\left(2\right)}\end{matrix}\right.\)(1 ) vô lý=> loại
=> (x-2).(x-4)<0 <=> 2<x<4
b. ta có\(x^2+1>0\forall x\)
=>(x2 -1).(x2+1)<0 <=> (x2 -1)<0 <=> x2<1
<=> -1<x<1
câu c bạn làm tương tự
(sữa đề tìm \(x\) nguyên )
\(2^x+3+2^x=144\Leftrightarrow2^x+2^x=141\)
ta có : \(2^x+2^x\) là số chẳn
mà \(141\) là số lẽ \(\Rightarrow\) phương trình vô nghiệm
Ta có \(\frac{3+x}{5+y}=\frac{3}{5}\Rightarrow\frac{3+x}{3}=\frac{5+y}{5}\)và \(x+y=16\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{3+x}{3}=\frac{5+y}{5}=\frac{3+x+5+y}{3+5}=\frac{8+16}{8}=\frac{24}{8}=3\)
Do \(\frac{3+x}{3}=3\Rightarrow3+x=9\Rightarrow x=6\left(TM\right)\)
Vì \(\frac{5+y}{5}=3\Rightarrow5+y=15\Rightarrow y=10\left(TM\right)\)
Vậy \(x=6\) và \(y=10\)
mình giải cách 2 nhé:
Ta có;\(\frac{3+x}{5+y}=\frac{3}{5}\)
\(\Rightarrow\left(3+x\right).5=\left(5+y\right).3\)
\(\Leftrightarrow15+5x=15+3y\)
Mặt khác : x+y=16 => x=16-y
Thay vài biểu thức trên ,ta có:
\(\Rightarrow15+5\left(16-y\right)=15+3y\)
\(\Rightarrow15+80-5y=15+3y\)
\(\Rightarrow15+80-15=3y+5y\)
\(\Rightarrow80=8y\)=> y=10
=>x=16-10=6
Vậy x=6 , y=10
\(\left(x-1\right)^3-\left(x+2\right)^2=\left(2+x\right)^3-2x\left(2+3x\right)\)
\(\Leftrightarrow x^3-3x^2+3x-1-\left(x^2+4x+4\right)=8+12x+6x^2+x^3-4x-6x^2\)
\(\Leftrightarrow x^3-3x^2+3x-1-x^2-4x-4-8-12x-6x^2-x^3+4x+6x^2=0\)
\(\Leftrightarrow-4x^2-9x-13=0\)
\(\Leftrightarrow-\left(4x^2+9x+13\right)=0\Leftrightarrow4x^2+9x+13=0\)
\(\Leftrightarrow4x^2+9x+\dfrac{81}{16}+\dfrac{127}{16}=0\Leftrightarrow\left(2x+\dfrac{9}{4}\right)^2+\dfrac{127}{16}=0\)
ta có : \(\left(2x+\dfrac{9}{4}\right)^2\ge0\) với mọi giá trị của \(x\)
\(\Rightarrow\left(2x+\dfrac{9}{4}\right)^2+\dfrac{127}{16}\ge\dfrac{127}{16}>0\) với mọi giá trị của \(x\)
vậy phương trình vô nghiệm
Đoạn cuối bn giải sai rồi thi phải,sau khi đã tính đc và nhận biết a,b,c nhân với - 1 để có giá trị dương thì mk chỉ việc tính Denta rồi theo quy tắc để tính x1 và x2 thôi (Ý kiến riêng)
Từ đề bài:
=>x2+y2+z2=x+y+z-3
<=>x2-x+\(\dfrac{1}{4}+y^2-y+\dfrac{1}{4}+z^2-z+\dfrac{1}{4}+\dfrac{9}{4}\)=0
<=>\(\left(x-\dfrac{1}{2}\right)^2+\left(y-\dfrac{1}{2}\right)^2+\left(z-\dfrac{1}{2}\right)^2+\dfrac{9}{4}=0\)(1)
Do \(\left(x-\dfrac{1}{2}\right)^2\)\(\ge0\forall x\in R\)
\(\left(y-\dfrac{1}{2}\right)^2\)\(\ge0\forall y\in R\)
\(\left(z-\dfrac{1}{2}\right)^2\)\(\ge0\forall z\in R\)
=>\(\left(x-\dfrac{1}{2}\right)^2+\left(y-\dfrac{1}{2}\right)^2+\left(z-\dfrac{1}{2}\right)^2\)\(\ge0\forall x;y;z\in R\)
\(\left(x-\dfrac{1}{2}\right)^2+\left(y-\dfrac{1}{2}\right)^2+\left(z-\dfrac{1}{2}\right)^2+\dfrac{9}{4}\)\(\ge\dfrac{9}{4}>0\forall x;y;z\in R\)
=>(1) vô nghiệm
Vậy không tồn tại x,y,z thỏa mãn đề bài
xin lổi nhe